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Finding Gold 

Introduction 
During the period from the sixth century B.C. to the fifth century A.D., Greek 
scholars raised mathematics to a higher level than ever before in the Middle East 
or in Europe. One of the legendary figures of Greek mathematics was the 
philosopher and mystic, Pythagoras (ca. 580–500 B.C.). Historians credit 
Pythagoras and his followers with many important achievements. 
 After the fall of the Roman empire, Europe entered a period known as the Dark 
Ages. During these times, few advances were made in the studies of art, 
mathematics or science. Not until about 1000 A.D. did widespread interest in 
mathematical knowledge begin to re–emerge. An Italian merchant named 
Leonardo of Pisa (ca. 1180–1250), better known as Fibonacci, was an important 
contributor to this revival. 
 In this module, you examine some of the mathematical contributions of both 
Pythagoras and Fibonacci. 
 
 

Activity 1 
 
Many mathematicians have studied objects and shapes that can be characterized 
by specific ratios. For example, another Greek mathematician and scientist, 
Archimedes (ca. 287–212 B.C.), used circles to develop an approximation for π , 
the ratio of the circumference of a circle to its diameter. In the following 
exploration, you discover a classical ratio in some rectangles. 
 Before beginning the exploration however, consider the rectangles in Figure 1. 
Which of these rectangles looks “most pleasing” to you? To determine if others 
share your preference, use the template supplied by your teacher to survey at least 
10 other people and record your results. 

 
Figure 1: Five rectangles 

A

B
D

C

E
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Exploration 1 
 a. Draw a rectangle. 
 b. Measure the rectangle’s longer side (l) and its shorter side (s). 
 c. Calculate the ratio l s . 

 d. Use the class data from the rectangle survey to complete Table 1. 
  Table 1: Rectangle survey data 

Rectangle Number of 
People 

Percentage of 
People 

Ratio l s  

A    
B    
C    
D    
E    

 

Discussion 1 
 a. How does the ratio l s  of the rectangle you drew compare to those of 

others in the class? 
 b. 1. According to the class survey, which rectangle was most popular? 
 2. What is the ratio l s  of this rectangle? 

 3. What percentage of those surveyed chose the most popular 
rectangle? 

 c. How does the ratio l s  of the rectangle you drew compare to that of 
the most popular rectangle? 

Mathematics Note 
The golden ratio or golden section, often denoted by the Greek letter  (phi), is 
the irrational number 1 + 5( ) 2 which may be approximated as 1.618. 

 In a golden rectangle, the ratio of the lengths of the longer side to the shorter 
side is the golden ratio . 

 
 d. What general conclusion can you make about the dimensions of the 

most popular rectangle? 

φ

φ



303 

Exploration 2 
In 1876, the German psychologist Gustav Fechner conducted a rectangle survey 
similar to the one you completed in the introduction. About 75% of those 
surveyed selected a golden rectangle as “most pleasing.” The golden ratio is not 
limited to visually attractive rectangles, however. In fact, it appears in the 
dimensions of many objects in both art and nature. Some researchers, for instance, 
believe that the Greek artist Phidias (ca. 490–430 B.C.) used the golden ratio in his 
sculptures of the human form. 
 In the following exploration, you investigate the ratios of some human 
dimensions. 
 a. Select a sample of students from your class. 
 b. For each person in your sample, measure the length of one arm from 

shoulder to fingertips (a) and the width of the back from shoulder to 
shoulder (b). Calculate the ratio a b . 

 c. For each person in your sample, measure the length of one arm from 
shoulder to fingertips (a) and the length of that same arm from elbow 
to fingertips (e). Calculate the ratio a e . 

 d. Compile the class data for the ratios a b  and a e  and calculate the 
mean for each ratio. 

Discussion 2 
 a. Considering the data you collected in Exploration 2, would it seem 

reasonable for Phidias to use φ  in a sculpture of a person in your 
class? 

 b. Identify some other objects that appear to contain the golden ratio. 

Assignment 
 1.1 Golden rectangles have some interesting properties. For example, they 

can be constructed recursively from other golden rectangles. Recall 
that a recursive process uses the result of one procedure as the input 
for the next repetition of the same procedure. 

 a. 1. Draw a rectangle in which the ratio of the lengths of the 
longer side to the shorter side is about 1.6. This rectangle 
approximates a golden rectangle. 

 2. Draw a line segment that divides the rectangle into a square 
and another rectangle. 

 b. Measure the side of the square. 
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 c. 1. Calculate the ratio of the longer side to the shorter side of the 
smaller rectangle. 

 2. Is the smaller rectangle a golden rectangle? Justify your 
response. 

 d. Divide the smaller rectangle into a square and another rectangle. Is 
the new rectangle a golden rectangle? Justify your response. 

 e. Repeat Parts c and d three more times. 
 f. Describe what occurs each time you repeat the procedure in Part e. 
 1.2 The diagram below shows two golden rectangles, the smaller of which 

was formed by the process described in Problem 1.1. 

 
 a. Use these two rectangles to write a true proportion involving x. 
 b. Solve this proportion for x. 
 c. Since the two rectangles are golden rectangles, the value of x 

equals . Use the value of  to determine the arithmetic 
relationships that exist between each of the following pairs of 
values: 

 1.  and  

 2.  and  

 3.  and  

1

x

x −1

φ φ

φ 1 φ

φ φ2

φ2 1 φ
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 1.3 The followers of Pythagoras, known as the Pythagoreans, gave special 
significance to a pentagram, a star formed by connecting each vertex 
of a regular pentagon with its nonadjacent vertices. The diagram 
below shows a pentagram inscribed in regular pentagon BGFED. (All 
lengths given are approximate measures.) 

 

 a. The ratio BC AC  provides one example of the golden ratio. Find 
another pair of segments that appear to form the golden ratio. 

 b. Name each isosceles triangle in the shaded portion of the figure. 
 c. An isosceles triangle with a leg-to-base ratio of  is a golden 

triangle. Which triangles in Part b, if any, are golden triangles? 
Justify your response. 

 d. Determine the approximate measures of the angles in any golden 
triangle identified in Part c. What general conclusion can you 
make about the angles in a golden triangle? 

 1.4 Determine whether each statement below is true or false. Provide a 
counterexample for each false statement. 

 a. Every isosceles triangle is a golden triangle. 
 b. Every isosceles triangle with a 36˚ angle is a golden triangle. 
 c. Every isosceles triangle with a 36˚ non-base angle is a golden 

triangle. 
 d. Every triangle that contains the golden ratio is a golden triangle. 

* * * * *  

A

B

CD

E

F

GH

BD ≈ 3.565 cm
BC ≈ 2.203 cm
AC ≈1.362 cm

φ
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 1.5 Use the labeled points in the regular pentagon below to complete 
Parts a–c. 

 

 a. Name three pairs of noncongruent, similar triangles. 
 b. Write a proportion for each pair of triangles in Part a that verifies 

their similarity. 
 c. Are all golden triangles similar to each other? Explain your 

response. 
 1.6 The diagram below shows a portion of the drawing from Problem 1.5. 

 

  Triangles CBH and CBG are golden triangles. Use these triangles to 
verify that 

φ =
1 + 5
2

 

A

B

CD

E
F

GH

1

+1

φ

φ
36˚

36˚
C

H
G

B

φ



307 

 1.7 The unshaded figure below shows a regular “star” polygon formed by 
connecting every fourth vertex of a regular decagon. (All lengths 
given are approximate measures.) 

 

 a. Using the given distances, find three pairs of line segments whose 
ratio of lengths appears to form the golden ratio. 

 b. Find a golden triangle. Give evidence to support your choice. 
* * * * * * * * * * 

 
 

Activity 2 
 
In modern mathematics, Fibonacci is probably best known for the sequence of 
numbers that bears his name. The first two terms of the Fibonacci sequence are 
both 1. Successive terms are generated by adding the previous two terms. In other 
words, the Fibonacci sequence is 1, 1, 2, 3, 5, 8, … . Any sequence in which 
successive terms are formed by adding the previous two terms is referred to as a 
Fibonacci-type sequence. 
 In this activity, you investigate how Fibonacci-type sequences relate to some of 
the mathematics of the Pythagoreans. 

Exploration 1 
 a. Generate the first 25 terms of the Fibonacci sequence. 
 b. Write a recursive definition of the Fibonacci sequence, where Fn  is 

the nth term. 

A

B

C

DE

F

G

H

I J

K L

M
N O

P

36˚

KI ≈ 2.0 cm
LI ≈ 2.8 cm
MI ≈ 3.3 cm
NI ≈ 4.0 cm
OI ≈ 4.5 cm
PI ≈ 5.3 cm
CI ≈ 7.3 cm
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 c. 1. For each pair of consecutive Fibonacci numbers in Part a, Fn  and 
Fn+1 , calculate the following ratios: 

Fn+1
Fn

 and Fn+ 2
Fn +1

 

 2. For n = 1, 2,  3,  … , each ratio you calculated in Step 1 also forms a 
sequence. Recall that the limit of a sequence, k1,  k2 ,  k3 ,  … ,  kn,  …
, is a number L if for any prescribed accuracy, there is a term km  
such that all terms after km  are within this given accuracy of L. 

   As n increases, what limit do the two sequences of ratios 
appear to approach? 

 d. Using any two nonzero natural numbers of your choice, create a 
Fibonacci-type sequence of your own. Generate the first 25 terms of the 
sequence. 

 e. Repeat Part c using your sequence from Part d. 
 f. Create a sequence in which each successive term is the sum of the 

previous three terms. Begin the sequence with any three nonzero 
natural numbers. Generate the first 25 terms. 

 g. For each pair of consecutive numbers in your sequence in Part f, Fn  
and Fn+1 , calculate the following ratio: 

Fn+1
Fn

 

 h. Generate the first 10 terms of the sequence whose explicit formula is 
shown below: 

Sn =
φ n − (1 − φ )n

5
 

Discussion 1 
 a. Considering the terms of a Fibonacci-type sequence, describe what 

happens to the following ratios as n increases: 
Fn+1
Fn

, and Fn+ 2
Fn +1

 

 b. What is the relationship between a Fibonacci-type sequence and φ ? 

 c. Describe the sequence generated by the explicit formula in Part h of 
Exploration 1. 
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Exploration 2 
 a. Write any four consecutive terms of the Fibonacci sequence. 
 b. Calculate the product of the first and fourth terms and set this value 

equal to a. 
 c. Calculate twice the product of the second and third terms and set this 

value equal to b. 
 d. Perhaps the most famous mathematical relationship associated with 

Pythagoras is the one that bears his name. The Pythagorean theorem 
states that the sum of the squares of the lengths of the legs of a right 
triangle is equal to the square of the length of the hypotenuse. 

   For example, in triangle ABC of Figure 2, AB2 = AC2 + CB2 , or 
52 = 32 + 42 . 

 
Figure 2: Right triangle ABC 

   Determine the length of the hypotenuse c of the right triangle with 
legs of lengths a and b as determined in Parts b and c. 

 e. Determine if c is a term in the original sequence. 
 f. Calculate the area of the right triangle with sides a, b, and c. 
 g. Calculate the product of the four terms in Part a. Compare this number 

with the area of the triangle you calculated in Part f. 
 h. 1. Repeat Parts b–g using a different set of four consecutive terms of 

the Fibonacci sequence. 
 2. Repeat Parts b–g using four nonzero, consecutive terms of a 

Fibonacci-type sequence. 

3

4

5

A

C B
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Discussion 2 
 a. In Part h of Exploration 2, why were the four consecutive terms of a 

Fibonacci-type sequence restricted to nonzero numbers? 
 b. Natural numbers that satisfy the Pythagorean theorem are 

Pythagorean triples. For example, since 32 + 42 = 52 , (3,4,5) is a 
Pythagorean triple. 

   Did the values for a, b, and c in Exploration 2 form a Pythagorean 
triple when using four successive terms from: 

 1. the Fibonacci sequence? 
 2. a Fibonacci-type sequence? 
 c. Was the length of the hypotenuse found in Part d a term of the original 

sequence when using: 
 1. the Fibonacci sequence? 
 2. a Fibonacci-type sequence? 
 d. What relationship exists between four consecutive terms of any 

sequence and the area of a right triangle created using the process 
described in Parts b–d of Exploration 2? 

Assignment 
 2.1 a. Using terms in the Fibonacci sequence, generate three 

Pythagorean triples. 
 b. Is the length of each hypotenuse (c) a term in the Fibonacci 

sequence? 
 c. For each Pythagorean triple generated in Part a, calculate the area 

of the corresponding right triangle. Describe how you found your 
solutions. 

 2.2 a. Create three ordered triples (a,b, c)  where a is an odd number 
greater than 1, b = (a2 −1) 2 , and c = b +1 . Verify that each of 
these triples is a Pythagorean triple. 

 b. Explain why any three numbers a, b, and c that satisfy the 
constraints given in Part a form a Pythagorean triple. 

 c. Is the value for c in this case always a term in the Fibonacci 
sequence? Explain your response. 
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 2.3 While female bees have both a female and a male parent, male bees 
have only a female parent. The tree diagram below shows four 
ancestral generations of a male bee. Stage 1 represents the bee itself, 
stage 2 represents the bee’s parent, stage 3 represents the bee’s 
grandparents, and stage 4 represents the bee’s great-grandparents. 

 
 a. Continue the tree diagram for stages 5 and 6. 
 b. List the first six terms of the sequence t1,  t2 ,  …,  tn , where tn  is 

the number of bees in stage n. 
 c. 1. How many bees are there in stage 9 of the tree diagram? 
 2. How many bees are there in stage 15 of the tree diagram? 
 d. How could you find the number of bees in stage n of the tree 

diagram? 
* * * * * 

 2.4 The Lucas sequence, named after French mathematician Edouard 
Lucas, is a Fibonacci-type sequence with 1 and 3 as the first two 
terms. 

 a. Choose any four consecutive terms in the Lucas sequence. Using 
the method described in Parts b–d of Exploration 2, find values 
for a, b, and c. 

 b. Is (a,b, c)  a Pythagorean triple? Explain your response. 
 c. Do you think that c will always be a term in the Lucas sequence? 

Explain your response. 
 2.5 Choose any four consecutive terms in the Fibonacci sequence. 
 a. Using the method described in Parts b–d of Exploration 2, find the 

value for a hypotenuse c. Which term in the sequence is c? 
 b. Describe the relationship between the term numbers of the four 

consecutive terms and the term number of the hypotenuse. 
* * * * * * * * * * 

 
  

  

M

F

F

MF

M F

Stage 1
bee

Stage 2
parent

Stage 3 Stage 4
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Activity 3 
 
To create convincing arguments, mathematicians use a method based on logical 
reasoning. This process is referred to as proof. Although diagrams and pictures 
may be used to support arguments, a conclusion based solely on observation may 
or may not be true. 
 The Pythagorean theorem is one of the most well-known theorems in 
mathematics. Although the theorem bears the name of Pythagoras, many 
mathematicians throughout history have developed unique proofs for it. In fact, 
over 350 different proofs appear in E. S. Loomis’ The Pythagorean Proposition. 
In this activity, you examine several proofs of this famous theorem. 

Exploration 
Many demonstrations of the Pythagorean theorem show, either by adding or 
subtracting areas, that the area of a square on the hypotenuse of a right triangle is 
equal to the combined areas of the squares on the legs. In this exploration, you 
develop the motivation for a proof first written by H. E. Dudeney in 1917. 
 a. Draw a right triangle. 
 b. As shown in Figure 3 below, draw a square on each side of the right 

triangle. 

 
Figure 3: Squares on sides of right triangle 

 c. Find the center of the square on the longer leg. 
 d. Through this center, draw lines both parallel and perpendicular to the 

hypotenuse of the right triangle. These lines divide the square on the 
longer leg into four congruent quadrilateral regions. 

 e. Cut out the four quadrilateral regions found in Part d and the square 
on the shorter leg. 

 f. Arrange the pieces in Part e so that they fill the square on the 
hypotenuse without leaving gaps or overlapping. 

 g. Repeat Parts a–f using a different right triangle. 
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Discussion 
 a. How does Figure 3 relate to the Pythagorean formula a2 + b2 = c2? 
 b. What can you conclude about the combined areas of the squares on 

the legs and the area of the square on the hypotenuse? 
 c. Does the procedure you followed in the exploration prove the 

Pythagorean theorem? 
 d. H. E. Dudeney’s proof of the Pythagorean theorem is described as a 

“dissection” proof. Why do you think this term is used? 

Assignment 
 3.1 No evidence exists for the original proof of the Pythagorean theorem, 

but it is generally attributed to Pythagoras himself. According to 
legend, Pythagoras sacrificed an ox to celebrate the significance of 
this proof. Hence, its nickname the “ox-killer” proof. 

   Pythagoras’ proof considered two squares, each with side length of 
a + b . As shown below, square 1 is divided into six non-overlapping 
regions while square 2 is divided into five non-overlapping regions. 

   
 a. What type of quadrilateral is the inner figure in square 2? Justify 

your response. 
 b. Use the areas of squares 1 and 2 to prove the Pythagorean theorem. 

(Hint: Express each square’s area as the sum of the areas of its regions.) 

a

a

a

a a

a

a

ab

b

b

b

b

b

b

b

c c

square 1 square 2
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 3.2 Five years before he became president of the United States, James A. 
Garfield discovered a creative proof of the Pythagorean theorem. In his 
proof, he calculated the area of a trapezoid in two ways: by using the 
area formula for a trapezoid, and by adding the areas of the three right 
triangles that compose the trapezoid, as shown below. Verify that his 
method produces the formula a2 + b2 = c2 . 

 
 3.3 In his proof of the Pythagorean theorem, British mathematician John 

Wallis used similar right triangles, as shown in the diagram below. 

 
 a. Prove that ΔACD ~ ΔCBD ~ ΔABC . 
 b. Use measures a, b, m, n, and c to write two true proportions. 
 c. Use the proportions in Part b to prove the Pythagorean theorem. 

a

b

c

c

a

b

D

ab

c

m nA B

C
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 3.4 Shearing is a transformation that can be used to create parallelograms 
of equal area by holding one side of a square fixed and sliding the 
opposite side along the line containing this side. The diagram below 
shows one example of this process 

 
   In his proof of the Pythagorean theorem, Euclid began with 

squares on the sides of a right triangle, as in Step 1. He sheared the 
squares to obtain the two shaded parallelograms in Step 2. 

   The shaded polygon in Step 2 was then transformed to reach Step 3. 
Finally, another transformation of a part of the shaded polygon was 
performed to reach Step 4. 

   
 a. Use one of the shaded squares in Step 1 and its sheared image in 

Step 2 to demonstrate that the areas are equal. 
 b. Describe in detail the mathematics that occur at each step and 

explain how this process demonstrates the Pythagorean theorem. 
* * * * *  

Step 1 Step 2

Step 3 Step 4
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 3.5 The Hindu scholar Bhaskara contributed a short, yet elegant, proof of 
the Pythagorean theorem. For his proof, he drew the following figure 
with the single word, “Behold!” Calculate the area of the larger square 
in two different ways, then use the results to prove that a2 + b2 = c2 . 

 
 3.6 Use the following diagram to complete Parts a–e below, where φ  is 

the golden ratio. 

 

 a. Determine the values of x and y. 
 b. Explain why the two triangles are similar. 
 c. Explain why the triangles are not congruent, even though five of 

their parts are the same. 
 d. Find tan θ  and cos θ  and compare their values. 
 e. The following diagram shows some measurements of a cross 

section of the Great Pyramid of Giza. Find the ratio of AB to AD, 
then compare triangle ABD to the two triangles given above. 

 
* * * * * * * * * * 

 

c

a b

x y

1

φ

φ

θ θ

φ

A

B

CD
115 m 115 m

147 m
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Research Project 
 
In ancient Greece, mathematicians used a compass and straightedge to 
demonstrate various properties of geometry and find exact measures. 
 As shown in Figure 4, a point divides a line segment into the golden ratio when 
the ratio of the longer segment to the shorter segment is the same as the ratio of the 
whole line segment to the longer segment. 

 

Figure 4: The golden ratio 
 The ratio of the shorter segment to the longer segment, or a b , is the reciprocal 
of the golden ratio. Given that the value of the golden ratio is φ , the value of its 
reciprocal is 1 φ  or φ −1 . 

 Using a compass, a straightedge, and the right triangle in Figure 5 below, 
construct a segment whose length is equal to the reciprocal of the golden ratio. 
Describe the process that you used and explain why it works. 

 
Figure 5: A right triangle 

 

  

a b

b
a
=
a + b
b

1

1
2
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Summary 
Assessment 

 
 1. The following calculator algorithm generates terms of a sequence S: 
 Step 1: Choose a number between 1 and 10 as the first term. 
 Step 2: Add 1 to the term. 
 Step 3: Take the reciprocal of the result. This is the next term in S. 
 Step 4: Repeat Steps 2–3 until you have 10 terms of sequence S. 
 a. Use the algorithm to generate one sequence of 10 terms. 
 b. Repeat the algorithm using a different value in Step 1. 
 c. Does the sequence appear to approach a limit? Explain your 

response. 
 d. When Step 2 and Step 3 are interchanged in the algorithm, does 

the sequence appear to approach a limit? Explain your response. 
 2. Euclid determined that a point divides a line segment into the golden 

ratio φ  when the ratio of the longer segment to the shorter segment is 
the same as the ratio of the whole line segment to the longer segment. 
Euclid also found a similar relationship in the figure below. 

 

  In this diagram, the area of the larger square, ACDH, equals the area 
of the larger rectangle, ABFG. Use this fact and the appropriate area 
formulas to determine the exact value of φ . 

  

1A

B

C D

E
F

GH

φ

1
φ −1

φ −1
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Module 
Summary 

 
 • The golden ratio, or golden section, often denoted by the Greek letter φ  

(phi), is the irrational number 1 + 5( ) 2  or approximately 1.618. 

 • In a golden rectangle, the ratio of the measures of the longer side to the 
shorter side is the golden ratio (φ ). 

 • The first two terms of the Fibonacci sequence are both 1. Successive terms 
are generated by adding the previous two terms. In other words, the 
Fibonacci sequence is 1, 1, 2, 3, 5, 8, … . 

 • Any sequence in which successive terms are formed by adding the previous 
two terms is a Fibonacci-type sequence. 

 • The limit of a sequence, k1,  k2 ,  k3 ,  … ,  kn,  …, is a number L if for any 
prescribed accuracy, there is a term km  such that all terms after km  are 
within this given accuracy of L. 

 • The Pythagorean theorem states that the sum of the squares of the lengths 
of the legs of a right triangle is equal to the square of the length of the 
hypotenuse. In other words, if a and b are the lengths of the legs of a right 
triangle and c is the length of the hypotenuse, then: 

a2 + b2 = c2  
 • Natural numbers x, y, and z that satisfy the Pythagorean theorem are 

Pythagorean triples and may be represented by (x,y,z) . 

 • The reciprocal of the golden section, 1 φ , is approximately 0.618. 
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