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Reinvent the Wheel 

Introduction 
The invention of the wheel took place several thousand years ago, sometime 
during the Bronze Age (about 3500–1000 B.C.). Since then, circular shapes have 
been incorporated in an almost endless list of useful inventions, from drill bits to 
medicine bottles. But have you ever stopped to wonder if a circle provides the 
best design for these products? 
 The circle’s popularity may have discouraged inventors from examining the 
usefulness of other shapes. Are there other curved shapes that might work as 
well—or better—in some applications? 
 
 

Activity 1 
 
When building the pyramids, the ancient Egyptians may have transported the 
immense blocks of stone from quarry to construction site using a system of 
rollers. Today, cylindrical rollers help workers move heavy loads in a wide 
variety of situations—everywhere from shipyards to supermarkets. In this 
activity, you model the movement of an object using rollers with different shapes. 

Exploration 1 
 a. Place a flat object on two cylinders with the same radius, as shown in 

Figure 1. Roll the object and cylinders along a level surface. 

 
Figure 1: Two cylindrical rollers between object and surface 

 b. Observe the ride of the object on the rollers. Identify this motion as 
either “level” or “uneven.” 

 c. Cut out each of the shapes in template A (seven in all) as accurately as 
possible. Predict which of the shapes, when used as a roller, might 
provide a level ride. 

 
 

flat object

level surface

r r
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Mathematics Note 
A line of support is a line that intersects a curve such that all points of the curve 
not on the line lie on one side of the line. The perpendicular distance between a 
pair of parallel lines of support is a width (w) of the curve. 
 A curve of constant width has the same width between every pair of parallel 
lines of support. 
 Figure 2 shows one example of a curve of constant width w with two parallel 
lines of support, line n and line m. 

 
Figure 2: Curve of constant width with lines of support 

 
 d. Imagine that each of the seven shapes from template A represents a 

cross section of a roller. To simulate the motion of an object using 
rollers of each type, complete the following steps. 

 1. On a sheet of paper, draw a line m to represent a level surface (see 
Figure 1). 

 2. Position shape A from the template so that line m is a line of 
support for it. 

 3. Draw a line parallel to line m to represent a flat object to be 
moved by rolling shape A. Label this line n; it should also be a 
line of support for shape A. 

 4. Simulate the motion of the flat object by “rolling” shape A along 
line m. If both m and n remain lines of support for shape A at all 
times (in other words, if shape A is always between, and touching, 
both lines), identify the motion as “level.” If not, identify the 
motion as “uneven.” 

 5. Repeat Steps 1–4 using shapes B through G. 
 e. Determine which of the seven shapes have constant widths. 

Discussion 1 
 a. Is a line of support always a tangent line? Explain your response. 
 b. In Part d of Exploration 1, why are lines m and n drawn parallel to 

each other? 
 c. Which shapes are curves of constant width? Justify your response. 

w
n

m
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 d. 1. What characteristics are common to the shapes that provided 
“level” rides? 

 2. What characteristics can cause shapes to provide “uneven” rides? 
 e. Is every circle a curve of constant width? Explain your response. 

Exploration 2 
In Exploration 1, one of the figures that has a constant width is shape E. This 
shape is a Reuleaux (pronounced “rue-low”) triangle, named after the German 
mathematician and high school teacher Franz Reuleaux (1829–1905). Figure 3 
shows another example of a Reuleaux triangle. 

 
Figure 3: A Reuleaux triangle 

 In this exploration, you construct several Reuleaux polygons, then determine 
whether or not each one is a curve of constant width. 
 a. Construct a Reuleaux triangle by completing the following steps. 
 1. Construct an equilateral triangle with sides measuring 5 cm. 
 2. Construct an arc that has its center at one vertex and its endpoints 

at the two other vertices, as shown in Figure 4. 

 
Figure 4: Arc connecting two vertices with center at third vertex 

 3. Construct similar arcs with centers at the other two vertices. The 
figure formed by the three arcs is a Reuleaux triangle. 

 4. Carefully cut out the shape of the Reuleaux triangle. 

arc
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 b. The constructions described in Part a are not possible for all regular 
polygons. 

 1. Attempt to repeat Part a using a square, a regular pentagon, a 
regular hexagon, and a regular heptagon. 

 2. Record which regular polygons did not allow the constructions 
described in Part a. 

 c. Using the method described in Part d of Exploration 1, determine which 
of the Reuleaux polygons you created are curves of constant width. 

 d. Record the width of each Reuleaux polygon that is a curve of constant 
width. 

Discussion 2 
 a. 1. Which regular polygons do not allow the constructions described 

in Part a of Exploration 2? Explain your response. 
 2. In general, what types of polygons can be used to construct 

Reuleaux polygons? 
 b. Do all Reuleaux polygons appear to be curves of constant width? 

Explain your response. 
 c. How many pairs of parallel lines of support are there for a Reuleaux 

polygon? Explain your response. 

Mathematics Note 
A Reuleaux polygon is a curve of constant width constructed from a regular 
polygon with an odd number of sides. For example, Figure 5 shows a Reuleaux 
triangle with a constant width w. 

 
Figure 5: A Reuleaux triangle and two parallel lines of support 

w
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Assignment 
 1.1 Does a Reuleaux triangle fit the definition of a triangle in Euclidean 

geometry? Explain your response. 
 1.2 Use the following algorithm to construct a Reuleaux-like polygon 

from a regular polygon with an even number of sides. 
 a. Construct a regular polygon with an even number of sides, each 

measuring 5 cm. 
 b. Construct an arc that has its center at the midpoint of one side and 

its endpoints at the vertices on the opposite side, as shown in the 
sample diagram below. 

 
 
 
 
 
 
 c. Construct similar arcs with centers at the midpoints of the 

remaining sides. Erase the original regular polygon. 
 d. Is the resulting figure a curve of constant width? Justify your 

response. 
 1.3 Two students, Anton and Jennifer, think that they can make a curve of 

constant width from isosceles triangle ABC, shown below. 
 

 
 
 
 
 
 a. If Anton and Jennifer are right, predict the measure of the constant 

width for the curve generated by ΔABC . 
 b. To test Anton and Jennifer’s prediction, complete Steps 1–8. 
 1. Create a triangle with the same dimensions as ΔABC  above. 
 2. Draw BC

⎯ → ⎯ 

 about 2 cm past C. 
 3. Draw an arc with its center at B and one endpoint at A so that 

it intersects BC
⎯ → ⎯ 

. Label the point where the arc intersects BC
⎯ → ⎯ 

 
as point F. 

 4. Draw CB
⎯ → ⎯ 

 about 2 cm past B. 

midpoint arc

3 cm3 cm

2 cm

A

B C
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 5. Draw an arc with its center at C and one endpoint at A so that 
it intersects CB

⎯ → ⎯ 

. Label the point where the arc intersects CB
⎯ → ⎯ 

 
as point E. 

 6. Construct a circle with its center at C that contains F. 
Construct another circle with its center at B that contains E. 

 7. Construct AB
⎯ → ⎯ 

 and AC
⎯ → ⎯ 

. Label a point on AB
⎯ → ⎯ 

 that is not 
between A and B as point K. Label a point on AC

⎯ → ⎯ 

 that is not 
between A and C as point L. 

   Label the point of intersection of circle B and BK
⎯ → ⎯ 

 as point G. 
Label the point of intersection of circle C and CL

⎯ → ⎯ 

 as point H. 
 8. Construct an arc with its center at A and endpoints at G and H. 
 c. Does figure AFHGE represent a curve of constant width? Were 

Anton and Jennifer correct? Explain your responses. 
 1.4 After attempting to create a curve of constant width from an isosceles 

triangle whose congruent sides are longer than the base side, Anton and 
Jennifer decided to try using an isosceles triangle whose base side is 
longer than the congruent sides. They started with ΔABC  shown below. 

 
 a. First, the two friends constructed a line perpendicular to BC  

through point A. Then, they labeled a point ʹ A  on the 
perpendicular line so that Δ ʹ A BC  was equilateral. 

   Beginning with these same two steps, recreate Jennifer and 
Anton’s construction. 

 b. Is the result in Part a a curve of constant width? If so, describe its 
width. If not, explain why not. 

* * * * * 

4 cm

5 cm

4 cm

A

B C
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 1.5 Many compact disc (CD) players feature a disc changer that holds 
more than one disc. Disc changers typically come in one of two 
formats: a stack or a single drawer. 

 a. Why might the single drawer of a three-disc changer be shaped 
like a Reuleaux triangle, rather than an equilateral triangle or a 
circle? 

 b. Why would the single drawer of a four-disc changer not be shaped 
like a square? 

 1.6 Describe a curve of constant width that might provide the best shape 
for a single-drawer CD changer that holds five discs. 

* * * * * * * * * * 
 
 

Activity 2 
 
In addition to their applications in compact disc players, Reuleaux triangles also 
provide the basic design for drill bits used to create “square” holes. In this 
activity, you examine how and why these drill bits work. 

Exploration 
In this exploration, you model the process of drilling a square hole. 
 a. Create a square cardboard frame with outside edges that measure 12 

cm each, as shown in Figure 6. The inside of the frame should 
measure 8 cm on each side. 

 
Figure 6: Square cardboard frame 

 b. Tape the frame to a sheet of white paper, then tape the white paper to 
a hard surface. 

 c. On another sheet of cardboard, construct a Reuleaux triangle using an 
equilateral triangle with sides measuring 8 cm. 

12 cm

8 cm 12 cm

8 cm
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Mathematics Note 
A median is a segment that connects the vertex of a triangle with the midpoint of 
the opposite side. The intersection of the medians of a triangle is the centroid. 
 Consider an equilateral triangle inscribed in a Reuleaux triangle, as shown in 
Figure 7. If the medians of the inscribed triangle are extended to intersect the 
Reuleaux triangle, they form the medians of the Reuleaux triangle. Since the 
intersection of the two sets of medians is the same, the centroid of the inscribed 
triangle is also the centroid of the Reuleaux triangle. 

 
Figure 7: Reuleaux triangle with medians and centroid 

 In Figure 7, the three medians of Reuleaux triangle ABC are AE , BF , and CD . 
The centroid is located at point G: 

 
 d. Construct the three medians and centroid of your Reuleaux triangle 

from Part c. Punch a small hole through the centroid. 
 e. Cut out the Reuleaux triangle and place it in the square frame, as 

shown in Figure 8. 

 
Figure 8: Reuleaux triangle in square frame 

 f. Place the point of a pencil in the hole at the centroid. 
 g. With the tip of the pencil, trace the path of the centroid as you rotate 

the Reuleaux triangle inside the square frame. (This may require two 
people: one to rotate the triangle and another to hold the pencil.) 

 

tape

frame
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Discussion 
 a. How do the results of the exploration confirm that a drill bit in the 

shape of a Reuleaux triangle can create a “square” hole? 
 b. Describe the path of the centroid in Part g of the exploration. 
 c. What does the path of the centroid represent for a drill bit? 
 d. Suppose that the path of the centroid were a single point. What is the 

shape of the hole produced by this drill? 
 e. Why do you think that Reuleaux polygons are not used as wheels on 

vehicles? 

Assignment 
 2.1 The actual bit that drills square holes was invented by Harry Watts in 

1914. The figure below shows a Watts drill, the Watts chuck that allows 
the unusual motion of the centroid, and a cross section of the bit. (A 
metal guide is necessary for accurate drilling.) 

 
 a. In which direction should this bit rotate to drill a hole? 
 b. Explain why the cross section of this bit does not show the shape 

of an entire Reuleaux triangle. 
 2.2 For a woodworking project, Ebdul wants to drill a square hole 4 cm on 

each side. Describe the size of the drill bit required to drill this hole. 
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 2.3 a. Consider a drill bit based on the shape of a Reuleaux pentagon. If 
the centroid follows a path similar to the one in Part g of the 
exploration, what will be the shape of the hole? Hint: You may 
want to repeat the exploration using a Reuleaux pentagon. 

 b. As the number of sides increases in the Reuleaux polygon that 
determines the shape of the bit, what shape will the hole 
approach? 

 2.4 a. Draw all the lines of symmetry for an equilateral triangle. 
 b. Is every median of an equilateral triangle contained in a line of 

symmetry? Justify your response. 
 c. Is every median of a Reuleaux triangle contained in a line of 

symmetry? Justify your response. 
* * * * * 

 2.5 a. Draw several regular polygons, other than equilateral triangles, 
each with a different number of sides. For each regular polygon, 
draw all the lines of symmetry. 

 b. Do you think the lines of symmetry for every regular polygon 
always intersect at one point? Justify your response. 

 c. Do you think that the lines of symmetry for every Reuleaux 
polygon always intersect at one point? Justify your response. 

 2.6 a. Draw several triangles, including at least one scalene, one 
isosceles, and one equilateral. For each triangle, draw the 
perpendicular bisector of each side. Extend the perpendicular 
bisectors until they intersect. This point of intersection is the 
circumcenter. 

 b. For each triangle, draw a circle with its center at the circumcenter 
and radius equal to the distance from the circumcenter to one of 
the triangle’s vertices. 

 c. Based on your observations in Parts a and b, suggest a definition 
for a circumcenter. 

 d. Use your responses to Parts a–c to explain why the following 
statement is true: “For any three noncollinear points in a plane, 
there is a circle that contains all three of them.” 

 2.7 a. Draw several triangles, including at least one scalene, one 
isosceles, and one equilateral. For each triangle, draw the angle 
bisector of each angle. Extend the angle bisectors until they 
intersect. This point of intersection is the incenter. 

 b. For each triangle, draw a circle with its center at the incenter and 
radius equal to the perpendicular distance from the incenter to one 
of the triangle’s sides. 

 c. Based on your observations in Parts a and b, suggest a definition 
for an incenter. 
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 2.8 a. The diagram below shows an equilateral triangle ABC, its medians, 
and its centroid. What do you think is the ratio of AG to AD? Use a 
geometry utility to test your prediction. 

 

 b. Prove that the centroid of an equilateral triangle is 2 3  the 
distance from any vertex to the opposite side. Hint: Show that 
AG AD = 2 3, BG BE = 2 3 , and CG CF = 2 3 . 

 2.9 The diagram below shows a Reuleaux triangle ABC, its medians, and 
its centroid. Determine the ratio AG AD  for a Reuleaux triangle. 

 
* * * * * * * * * * 

Research Project 
 
Reuleaux triangles have been incorporated in a number of inventions, including 
the rotary engine. Developed by Felix Wankel in the 1950s, the rotary engine 
weighs about one-third as much as a piston engine of comparable power. Figure 9 
shows a diagram of the rotor in this engine. 

 
Figure 9: Rotor for a rotary engine 

A

BC D

E FG

A

BC
D

E F
G

main shaft
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 In the 1970s, the Mazda Company introduced two automobiles powered by 
rotary engines: the RX-2 and the RX-3. The popularity of these cars was limited, 
due in part to their poor fuel economy. By 1995, Mazda’s RX-7 was one of the 
few automobiles with a rotary engine remaining on the U.S. market. 
 Investigate the development of the rotary engine. Your report should include: 
 • a description of the engine’s origins 
 • an explanation of how it works 
 • a comparison with piston-powered engines 
 • a summary of its applications. 
 

 
 

Activity 3 
 
Since the sides of a Reuleaux polygon are curved, they cannot be measured in the 
same way as the sides of an ordinary polygon. In this activity, you derive a formula 
for the perimeter of a Reuleaux triangle, then generalize this formula for all 
Reuleaux polygons. You also determine how to calculate the area of Reuleaux 
polygons. 

Exploration 1 
Each side of a Reuleaux polygon is an arc of a circle. In this exploration, you 
determine a method for finding the length of an arc given the measure of its 
central angle and the radius of the circle. 
 Figure 10 below shows a regular polygon, along with one side (  

⌢ 
A B ) of the 

corresponding Reuleaux polygon. This construction involves two different central 
angles: the central angle of the regular polygon (∠ADB ) and the central angle that 
determines the side of the Reuleaux polygon (∠ACB ). The measures of these 
central angles depend on the number of sides in the Reuleaux polygon. 

 
Figure 10: Construction of a Reuleaux polygon 

A B

C

D
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 a. Create a table with headings like those in Table 1 below. 
  Table 1: Angles used to create a Reuleaux polygon 

Reuleaux 
Polygon 

m∠ADB m∠ADC m∠ACB  m∠ACB
360˚

 

triangle 120˚ 120˚ 60˚ 1 6  
pentagon  144˚   
heptagon   25 57˚   
nonagon     

n-gon     
 
 b. 1. Create a regular pentagon and one arc of the corresponding 

Reuleaux polygon. 
 2. Construct ∠ADB , ∠ADC , and ∠ACB , as shown in Figure 10. 
 3. Use your construction to complete the appropriate row in Table 1. 
 c. Repeat Part b for a regular heptagon and a regular nonagon. 
 d. Use any patterns you observe to complete Table 1 for a regular 

polygon with n sides. 

Mathematics Note 
The measure of an arc is the measure of its central angle. 
 The length of an arc is the distance on the circle between the arc’s endpoints. 
This distance can be found by multiplying the circumference of the circle by the 
fractional part of the circle that the arc represents. 
 For example, Figure 11 shows a circle with center at O and a radius of 5 cm. 

 
Figure 11: An arc of a circle 

The measure of   
⌢ 

A B  is 45˚. Since the central angle of the entire circle is 360˚, the 
length of   

⌢ 
A B  can be found as follows: 

45
360

• 2π(5) ≈ 4 cm  

5 cm

A

B

O

45˚
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 e. Given a constant width of 5 cm for each Reuleaux polygon, complete 
Table 2 below. 

  Table 2: Perimeter of Reuleaux polygons with w = 5 cm  
Reuleaux Polygon Side Length Perimeter 

triangle   
pentagon   
heptagon   
nonagon   

n-gon   
 

Discussion 1 
 a. When considering the arcs that form the sides of Reuleaux polygons, 

how is the radius of the circle that contains the arc related to the width 
of the Reuleaux polygon? 

 b. What is the relationship between the number of arcs used to construct 
a Reuleaux polygon and its perimeter? 

 c. Suggest a formula for the perimeter of a Reuleaux polygon with n 
sides and a constant width w. 

Mathematics Note 
The perimeter (P) of any curve of constant width w  can be calculated by the 
formula P = πw . 
 For example, a Reuleaux triangle with a constant width of 10 cm has a 
perimeter of 10π  cm. 

 
 d. Why doesn’t the formula for the perimeter of a Reuleaux polygon 

include the number of sides? 
 e. A circle is a curve of constant width. Does the formula for the 

perimeter of a curve of constant width apply to a circle? Explain your 
response. 

 f. Recall that a central angle is an angle whose vertex is at a circle’s 
center. An inscribed angle is an angle whose vertex is on the circle. 
For example, Figure 12 shows three different inscribed angles. 
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Figure 12: Three inscribed angles 

 1. In Figure 12a, one of the sides of inscribed angle ABC passes 
through the circle’s center O. What is the relationship between an 
inscribed angle of this type and the measure of its intercepted arc? 
Explain your response. 

 2. Is the relationship you described in Part f1 also true when the 
center O lies in the interior of inscribed angle ABC, as shown in 
Figure 12b? Justify your response. 

 3. Does this relationship also hold true when O lies outside inscribed 
angle ABC, as shown in Figure 12c? 

 g. Figure 13 below shows part of the construction of a Reuleaux 
polygon. 

 
Figure 13: Construction of a Reuleaux polygon 

  In Exploration 1, you discovered that 

m∠ACB =
1
2
m∠ADB  

  How are these two angles related in terms of the circle with center at 
D and radius DA? 

a. b.

A

B
CO

X

c.

X

A

B

C

O

A

B

C

O

A B

C

D
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Exploration 2 
In this exploration, you use your results from Exploration 1 to develop a method 
for calculating the areas of Reuleaux polygons. 

Mathematics Note 
A sector of a circle is a region bounded by the sides of a central angle and an arc 
of the circle. In Figure 12, for example, the shaded region represents the sector 
defined by ∠AOB . 

  
Figure 12: A sector of circle O 

 A segment of a circle is a region bounded by a chord and the arc that shares 
the same endpoints as the chord. For example, Figure 13 shows the segment 
defined by chord AB and   

⌢ 
A B . 

 
Figure 13: A segment of circle O 

 
 a. Create a table with headings like those in Table 3. 
  Table 3: Area of segments for Reuleaux polygons with w = 5 cm  

Reuleaux Polygon Area of Sector Area of Segment 
triangle   

pentagon   
heptagon   
nonagon   

n-gon   

A

B
O

A

B
O
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 b. The area of a sector can be found by multiplying the area of a circle 
by the fractional part of the circle that the sector represents. Use the 
values you recorded in the appropriate column of Table 1 to find the 
area of the sector that corresponds with each Reuleaux polygon in 
Table 3. 

 c. Use the area of each sector in Part b to determine the area of the 
corresponding segment of a circle for each Reuleaux polygon. Record 
these values in Table 3. 

   Hint: Use the area of the triangle formed by the chord and the central 
angle to help determine the area of the segment. You may need to use 
trigonometry to find the lengths of sides. 

 d. Given a set of Reuleaux polygons with the same constant width, 
which one do you think will have the least area? 

Discussion 2 
 a. Describe how you found the area of the sector that corresponds to a 

Reuleaux triangle for which w = 5 cm . 
 b. Describe how you found the area of the segment that corresponds to a 

Reuleaux triangle for which w = 5 cm . 
 c. In general, how does the area of a Reuleaux polygon compare with the 

area of the inscribed regular polygon? 

Assignment 
 3.1 Calculate the perimeter of each of the following Reuleaux polygons: 
 a. a Reuleaux triangle with a constant width of 11 cm 
 b. a Reuleaux 17-gon with a constant width of 15 cm 
 c. a Reuleaux pentagon with a constant width of 10 cm. 
 3.2 Calculate the area of a Reuleaux triangle with constant width of 7 cm. 
 3.3 The diagram below shows the changer trays for two different CD 

players. The width of the tray shaped like a Reuleaux triangle is 26.1 
cm. The radius of the tray shaped like a circle is 13.8 cm. Compare the 
areas of the two trays. 
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 3.4 Determine the area of each of the following Reuleaux polygons: 
 a. a Reuleaux pentagon with a constant width of 10 cm 
 b. a Reuleaux heptagon with a constant width of 10 cm. 

* * * * * 
 3.5 Describe a method for determining the area of any Reuleaux polygon. 
 3.6 For its new conveyor system, a manufacturing company is considering 

rollers shaped like Reuleaux heptagons. An engineer says this design 
will reduce costs because these rollers require less material than 
circular rollers. What percentage of material will be saved by using 
rollers shaped like Reuleaux heptagons instead of circular rollers? 

 3.7 Describe the three-dimensional surface that results when a Reuleaux 
triangle is rotated around an axis of symmetry. Include a sketch in 
your description, and suggest some possible applications for the 
surface. 

* * * * * * * * * * 
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Summary 
Assessment 

 
 1. In some applications, it may be desirable to modify the shape of a 

Reuleaux polygon to obtain more “rounded” corners. 
 a. To construct a Reuleaux triangle with rounded corners, complete 

the following steps. 
 • Construct an equilateral triangle ABC with sides measuring 

4 cm each. 
 • Extend the sides of the triangle 1 cm past each vertex. 
 • Construct an arc with its center at one vertex of the triangle 

and a radius of 5 cm. Use the endpoints of two extended sides 
as the endpoints of the arc, as shown below. 

 
 • Repeat the previous step for the two other vertices. 
 • To connect the endpoints of each pair of adjacent arcs, 

construct a smaller arc with its center at a vertex of the 
original triangle and a radius of 1 cm. 

 b. Is the shape you drew in Part a a curve of constant width? Justify 
your response. 

 c. Determine the perimeter of the shape. 
 d. Determine the area of the shape. 

1 cm4 cmA

B

C 1 cm
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 2. The circular cutting blades on a Norelco™ electric razor are arranged 
as shown in the diagram below. 

 
  What is the best shape for the head of this razor? Explain your response. 
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Module 
Summary 

 
 • A line of support is a line that intersects a curve such that all points of the 

curve not on the line lie on one side of the line. 
 • The perpendicular distance between a pair of parallel lines of support is a 

width (w) of the curve. 
 • A curve of constant width has the same width between every pair of 

parallel lines of support. 
 • A Reuleaux polygon is a curve of constant width constructed from a 

regular polygon with an odd number of sides. 
 • A median is a segment that connects the vertex of a triangle with the 

midpoint of the opposite side. The intersection of the medians of a triangle 
is the centroid. 

 • An arc of a circle is a part of the circle whose endpoints are the 
intersections, with the circle, of the sides of a central angle. The measure of 
an arc is the measure of its central angle. 

 • The length of an arc is the distance on the circle between the arc’s 
endpoints. This distance can be found by multiplying the circle’s 
circumference by the fractional part of the circle that the arc represents. 

 • The perimeter (P) of any curve of constant width w  can be calculated by the 
formula P = πw . 

 • A sector of a circle is a region bounded by the sides of a central angle and 
an arc of the circle. The area of a sector can be found by multiplying the 
circle’s area by the fractional part of the circle that the sector represents. 

 • A segment of a circle is a region bounded by a chord and the arc that shares 
the same endpoints as the chord. 
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