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An Imaginary Journey Through the Real World 

Introduction 
You are familiar with many different sets of numbers: the natural numbers, the 
whole numbers, the integers, the rational numbers, and the real numbers. Each set 
was developed as a social—or mathematical—need arose. 
 Written symbols for the natural numbers 1, 2, 3, … are at least as old as the 
pyramids. Around 200 A.D., the number 0 was introduced in India to represent an 
empty column in a counting board that resembled an abacus. The set of numbers 
consisting of 0 and the natural numbers make up the set of whole numbers. 
 The need for negative numbers emerged in China in the 6th and 7th centuries, 
though they were not used in Europe until the 15th century. Negative numbers 
were useful for representing quantities above or below a given level. The natural 
numbers, their opposites (negatives), and zero make up the set of integers. 
 The ancient Greeks introduced the positive rational numbers to represent 
fractional parts of a quantity. The term rational was coined to describe numbers 
that are ratios of two natural numbers, where the denominator is not 0. During this 
time, the Greeks believed that rational numbers could be used to describe exactly 
all measurements in the physical world. 
 This hypothesis about rational numbers was incorrect. When Greek 
mathematicians tried to find a rational number to describe the length of the 
diagonal of a square like the one shown in Figure 1, they realized that no such 
rational number existed.  

 
Figure 1: A square and one of its diagonals 

 As a result, the Greeks extended their number system to include irrational 
numbers. Eventually, the sets of rational and irrational numbers were combined to 
form the set of real numbers. 
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Activity 1 
 
Is the set of real numbers sufficient to describe everything in the physical—or 
mathematical—world? In this module, you will investigate situations in which 
another set of numbers is useful. 

Discussion 
 a. 1. What are the solutions to the equation x2 − 2 = 0 ? 
 2. How are these solutions related to the factors of the polynomial 

x2 − 2? 
 b. In general, the difference of squares x2 − a2  has two factors: (x − a)  

and (x + a) . In other words, x2 − a2  can be factored as (x − a)(x + a) , 
or x2 − a2 = (x − a)(x + a) . 

   Given this fact, what are the solutions to a polynomial equation of 
the form x2 − a2 = 0 ? 

 c. Are there any real-number solutions to the equation x2 +1 = 0 ? 
Explain your response. 

Mathematics Note 
The notation for the imaginary unit i, where i = −1  and i2 = −1 , was first 
introduced by Swiss mathematician Leonhard Euler (1707–1783). The adoption 
of i  by Gauss in his classic Disquisitiones arithmeticae in 1801 secured its use in 
mathematical notation. This notation was generalized to define the square root of 
any negative number as: −a = −1 • a = i a  for any number a > 0 . 

 For example, −3 = −1 • 3 = i 3  and −9 = 9 • −1 = 3i . 
 A complex number is any number in the form a + bi , where both a and b are 
real numbers. For example, 4.3 + i 5  and π − 2i  are complex numbers. So are 7i  
and 11, since they may be represented as 0 + 7i  and 11 + 0i , respectively. 
 A pure imaginary number is a complex number a + bi  for which a = 0  and 
b ≠ 0 . For example, 5i , 8i , and i 5  are pure imaginary numbers. 
 A real number is a complex number a + bi  for which b = 0 . For example, 
5 + 0i = 5  and −3 + 0i = −3  are real numbers. 
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 The Venn diagram in Figure 2 shows the relationships among the sets of 
complex numbers, pure imaginary numbers, and real numbers. 

 
Figure 2: Venn diagram of complex numbers 

 In the set of complex numbers, a + bi = c + di  if and only if a = c and b = d . 

 
 d. 1. Considering the information given in the mathematics note, along 

with the factors of a difference of squares, determine the factors of 
x2 + 4 . 

 2. What are the solutions to the equation x2 + 4 = 0 ? 
 e. Describe how you could factor any expression of the form x2 + a2  and 

identify its zeros. 
 f. 1. The Pythagorean theorem states that in a right triangle with legs of 

lengths a and b and hypotenuse of length c, a2 + b2 = c2 . Another 
way to describe this relationship is to say that the sum of the areas 
of two squares is the area of a third square. 

   Given the lengths of the sides of two of these squares, can you 
always find the length of the side of the third square? Explain your 
response. 

 2. In the set of real numbers, can you always find a value for b given 
the values of a and c in the equation a2 + b2 = c2? Explain your 
response. 

Imaginary
Real

Complex Numbers
a + bi

0 + bi a + 0i

Pure
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Assignment 
 1.1 Using your knowledge of the distributive property of multiplication 

over addition and subtraction, find the sum and the difference of each 
pair of complex numbers below. (Find the difference by subtracting 
the second complex number from the first.) Write each result in the 
form a + bi . 

 a. i and 9i 
 b. 4 and 7 + 3i  
 c. 21 − 6i  and 15i  
 d. −13 + 4i  and 3 − i  
 e. 12 + 5i  and 12 − 5i  
 f. a + bi  and c + di  
 1.2 Complex numbers also can be multiplied. Use technology to multiply 

each of the following pairs of complex numbers: 
 a. i and 3  

 b. 2i and i  
 c. 7 and 6 − 11i  

 d. 5 + i and 6 − 3i  

 e. a + bi  and c + di  
 1.3 Use your results in Problem 1.2e to show a pencil-and-paper method 

for multiplying complex numbers. 
 1.4 Complex conjugates are pairs of complex numbers in the form a + bi  

and a − bi . 
 a. Create a pair of complex conjugates. 
 b. Find the sum and product of the numbers in Part a. 
 c. Suggest a method for finding the sum and product of complex 

conjugates. 
 1.5 In the set of real numbers, the multiplicative identity is 1. In other 

words, when a is a real number, a •1 = 1• a = a . Demonstrate that 
1 + 0i  is the multiplicative identity in the set of complex numbers. 

* * * * * 
 1.6 Show that the solutions to the equation x2 + 27 = 0  are x = 3i 3  and 

x = −3i 3 . 
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 1.7 a. Describe the solutions to x2 +12 = 0  where the domain is the set 
of real numbers. 

 b. Describe the solutions to x2 +12 = 0  where the domain is the set 
of complex numbers. 

* * * * * * * * * * 
 
 

Activity 2 
 
Some sets of numbers have the closure property under certain operations. For 
example, consider the set of even natural numbers. If you add any two even 
natural numbers, you obtain an even natural number. Therefore, this set of 
numbers is closed under addition. 
 Does the set of complex numbers have the closure property under addition? Do 
you think that this set is closed under multiplication? Do you think that each 
complex number has a multiplicative inverse? In this activity, you answer these 
questions and more. 

Exploration 
If complex numbers behave like real numbers, then the reciprocal of 3 + 4i  can be 
written as 1 (3 + 4i) . By definition, the reciprocal of 3 + 4i  is a + bi  if and only if 
(a + bi)(3 + 4i) = 1+ 0i . In the following exploration, you discover how this 
reciprocal also can be represented in the form a + bi . 
 a. 1. Expand the left side of the equation below by multiplying the 

complex numbers. 
(a + bi)(3 + 4i) = 1+ 0i  

 2. Write the product on the left in the form m + ni . 
 b. In order for the complex number m + ni  found in Part a to equal 1 + 0i

, the real part (m) must equal 1 and the imaginary part (n) must equal 
0. 

 1. Write each of these relationships as an equation. 
 2. Solve these two equations to find the values of a and b in the 

complex number a + bi  that is the reciprocal of 3 + 4i . 
 c. Verify that the complex number found in Part b is the reciprocal of 

3 + 4i  by determining that its product with 3 + 4i  is 1. 
 d. The conjugate plays an important role in writing the reciprocal of a 

complex number in the form m + ni . 
   Use technology to evaluate 1 (3 + 4i) . Write the result so that m 

and n are reduced fractions. 
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 e. 1. Evaluate the following expression: 
1

3 + 4i
⎛ 
⎝ 

⎞ 
⎠ 
3 − 4i
3 − 4i
⎛ 
⎝ 

⎞ 
⎠  

 2. Compare the result to the complex number determined in Part b 
and your response to Part d. 

 3. Suggest a method for finding the reciprocal of a complex number 
a + bi  using the conjugate. 

 f. In the set of real numbers, division by a non-zero number can be 
interpreted as the product of the dividend and the reciprocal of the 
non-zero divisor. In other words, 

a ÷ b = a • 1
b

 

  where b ≠ 0 . Division among the complex numbers can be interpreted 
in the same way. Use this information to perform the following division: 

7 − 5i
3 + 4i

 

Discussion 
 a. Does the set of natural numbers have the closure property under 

subtraction? Explain your response. 
 b. In the real-number system, the commutative property of addition is 

stated as a + b = b + a. How could you show that the commutative 
property of addition is preserved in the set of complex numbers?  

 c. In the real-number system, the associative property of addition is 
stated as a + (b + c) = (a + b) + c . How could you show that the 
associative property of addition is preserved in the set of complex 
numbers? 

 d. In the real-number system, the commutative property of multiplication 
is stated as ab = ba . How could you show that the commutative 
property of multiplication is preserved in the set of complex numbers? 

 e. In the real-number system, the associative property of multiplication is 
stated as a(bc) = (ab)c . How could you show that the associative 
property of multiplication is preserved in the set of complex numbers? 
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Assignment 
 2.1 Write each of the following expressions in the form a + bi . 
 a. −49 + −1 + −9  
 b. −25 − 5 −9  
 c. (3 − 4i) + (−8 + 6i)  
 d. (8 − 7i) − (2 + 6i)  

 2.2 a. Determine the values of i1, i2,  .. .,  i1 0 . 
 b. Describe any patterns you observe in your response to Part a. 
 c. Evaluate i90 . 
 d. Write a rule for evaluating in  for any positive integer n. 
 2.3 Write each of the expressions below in the form a + bi . 
 a. (–9i)(22i) 
 b. (4 − i)(7 + 2i)  

 c. i3(5 + 7i)(3 − 4i) 
 2.4 Using the method developed in the exploration, simplify each 

expression below to the form a + bi . 

 a. 3
5 − 6i

 

 b. −8 − i
−3 − 9i

 

 2.5 Determine the roots of each equation below in the set of complex 
numbers and write the equation in factored form. 

 a. y = x2 − 28  

 b. y = x2 + 28  

 2.6 Describe the roots of each quadratic equation graphed below. 

   
 

x

y

x

y

x

ya. b. c.

point of
tangency
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 2.7 Write an equation with real coefficients for which each expression 
below is a solution. 

 a. 5i  

 b. 2i 7  
 c. 6 − 7i  

* * * * * 
 2.8 a. Explain why finding the zeros for y = x2 + x − 6  is equivalent to 

solving the equation −x + 6 = x2 . 

 b. Describe how the zeros of y = x2 + x − 6  are represented in each 
of the following graphs: 

   
 c. Describe how the zeros of y = x2 − 4x + 4 are represented in each 

of the graphs below: 

   

 d. Create a pair of graphs like those shown in Parts b and c to 
illustrate the zeros of y = x2 + x + 4 . 

y
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y
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 e. Given an equation of the form y = ax2 + bx + c , there are three 
possible cases for the roots of the equation: 

 1. two real roots 
 2. one real root 
 3. two non-real roots. 

  For each of these cases, sketch the graph of y = ax2 + bx + c  on 
one set of axes. Sketch the corresponding graph of y = ax2  and 
y = −bx − c  on a second set of axes. 

* * * * * * * * * * 
 
 

Activity 3 
 
Many quadratic equations of the form ax 2 + bx + c = 0 , where a ≠ 0 , have no 
real-number solutions. However, when using the set of complex numbers, solving an 
equation such as x2 + 0x +1 = 0  results in two solutions: x = −1 = i  and 
x = – –1 = –i . 

Exploration 1 
In this exploration, you investigate the solutions to second-degree polynomial 
equations of the form ax 2 +bx + c = 0, where a, b, and c are real numbers and 
a ≠ 0 . 
 a. 1. Find integer values for a, b, and c so that y = ax2 + bx + c  has two 

real-number roots, r1  and  r2 . Note: Recall that if ax 2 + bx + c = 0  
has solutions r1  and  r2 , then ax 2 + bx + c = a(x − r1 )(x − r2 ) . 

 2. To check your results, substitute the values you used for a, b, and 
c into the general equation y = ax2 + bx + c  and graph it. 

 b. Repeat Part a so that ax 2 + bx + c = 0  has one real root r. Note: If r is 
the only solution, then ax 2 + bx + c = a(x − r)(x − r ) . This solution is 
a double root. 

 c. Repeat Part a so that ax 2 + bx + c = 0  has no real roots. 
 d. Use technology to solve for x in the general quadratic equation 

ax 2 + bx + c = 0 , where a ≠ 0 . 
 e. Substitute the values of a, b, and c chosen for each case in Parts a–c 

into the solutions found in Part d. Confirm that the results agree with 
the values for the roots in Parts a–c. 

 f. Determine the value of b2 − 4ac  in each equation from Parts a–c. 



310 

Discussion 1 
 a. Describe how you could use a graph to demonstrate that a quadratic 

function has each of the following numbers of roots: 
 1. two real roots 
 2. one double root 
 3. no real roots. 
 b. How are the two complex-number solutions to the equation in Part c of 

Exploration 1 related? 

Mathematics Note 
Second-degree polynomial equations of the form ax 2 + bx + c = 0  with a ≠ 0 , 
always have two solutions when solved over the complex numbers: 

x =
−b
2a

+
b2 − 4ac
2a

 and x = −b
2a

−
b2 − 4ac
2a

 

These two solutions make up the quadratic formula. 

 When a, b, and c are real numbers and b2 − 4ac < 0 , the solutions are complex 
and occur in conjugate pairs. For example, for x2 + 2x + 5 = 0 , b2 − 4ac = −16 . 
Since −16 < 0 , x2 + 2x + 5 = 0  has two complex-number solutions: 

x =
−2
2
+

22 − 4 •5
2

= −1 + 2i  and x = −2
2
−

22 − 4 •5
2

= −1 − 2i  

 
 c. The expression b2 − 4ac , which appears under the radical sign in the 

solution of the general quadratic equation ax 2 + bx + c = 0 , is known 
as the discriminant. 

 
  As described in the mathematics note above, the discriminant can 

help you determine whether the roots of a quadratic equation are real 
or complex. Explain why this is true. 

 d. A polynomial is reducible over the real numbers if it can be expressed 
as the product of two or more polynomials of degree 1 and with real 
coefficients. Is every second-degree polynomial reducible over the 
real numbers? Explain your response. 
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Exploration 2 
In this exploration, you investigate the solutions to polynomial equations of 
degrees 3 and 4 with real-number coefficients. 

 a. If the third-degree polynomial equation ax3 + bx2 + cx + d = 0  has 
roots r1 , r2 , and r3 , the equation can be expressed in the form: 

a(x − r1)(x − r2 )(x − r3 ) = 0  

  Using this fact, find a combination of three distinct, real-number roots 
r1 , r2 , and r3 , such that a(x − r1)(x − r2 )(x − r3 )  results in a third-
degree polynomial with real coefficients. 

   Check your response by graphing the resulting equation. 
 b. Repeat Part a where r1  is a real root and r2  and r3  are complex roots 

that are not real. 
 c. Consider fourth-degree polynomial equations of the form 

ax 4 + bx3 + cx 2 + dx + e = 0  where a, b, c, d, and e are real numbers 
and a ≠ 0 . 

   Find a combination of four distinct, real-number roots r1 , r2 , r3 , 
and r4 , such that a(x − r1)(x − r2 )(x − r3 )(x − r4 )  results in a fourth-
degree polynomial with real coefficients. 

   Check your response by graphing the resulting equation. 
 d. Repeat Part c where r1  and r2  are distinct, real roots and r3  and r4  are 

complex roots that are not real. 
 e. Repeat Part c where r1 , r2 , r3 , and r4  are complex roots that are not real. 

Discussion 2 
 a. 1. How may graphs be used to check the number of real solutions to 

a cubic equation of the form ax3 + bx2 + cx + d = 0 , where a, b, c, 
and d are real numbers and a ≠ 0 ? 

  2. How many real-number solutions are possible for an equation of 
the form ax3 + bx2 + cx + d = 0 , where a, b, c, and d are real 
numbers and a ≠ 0 ? 

 3. How many complex-number solutions are possible? 
 b. 1. How many real-number solutions are possible for an equation of 

the form ax 4 + bx3 + cx 2 + dx + e = 0  where a, b, c, d and e are 
real numbers and a ≠ 0 ? 

 2. How many complex-number solutions are possible? 
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 c. Describe the relationship among the complex solutions of the form 
a + bi , where b ≠ 0 , of a polynomial equation when that equation has 
real-number coefficients. 

Mathematics Note 
The fundamental theorem of algebra states that every polynomial equation of 
degree n ≥ 1 with complex coefficients has at least one root which is a complex 
number. 
 One consequence of the fundamental theorem of algebra is that nth-degree 
polynomial equations have exactly n roots in the set of complex numbers. This 
total may include some multiple roots. For example, the roots of the fifth-degree 
polynomial x5 − 4x 4 −15x3 + 50x 2 + 64x − 96 = 0  are –3, –2, 1, and 4. One of 
these (4) is a double root. Therefore, the polynomial has a total of five roots in the 
set of complex numbers. 
 
 d. Describe the number of real solutions possible for polynomial 

equations of the form ax 5 + bx4 + cx 3 + dx2 + ex + f = 0 , where the 
coefficients are real numbers and a ≠ 0 . 

 e. In general, how many complex roots of the form a + bi , where b ≠ 0 , 
can an nth-degree polynomial equation with real coefficients have? 
How are these complex roots related? 

 f. For what type of polynomial equations must there always be at least 
one real root? Explain your response. 

Assignment 
 3.1 Determine the solutions to each of the following equations over the 

complex numbers. Use these solutions to express each equation as the 
product of first-degree polynomials. 

 a. 9x2 + 12x + 4 = 0  
 b. 9x2 + 35x − 4 = 0  
 c. x2 + 4x + 9 = 0  
 d. 3x3 − 12x2 +12x − 48 = 0  
 e. 2x 4 − 6x3 +12x2 + 4x −120 = 0 
 3.2 When considering solutions to polynomial equations with real 

coefficients, the fact that the product of a complex number and its 
conjugate is a real number has special significance. 

 a. Find a polynomial equation in the form ax 2 + bx + c = 0  with real 
coefficients that has solutions r1 = 2 + i  and r2 = 2 − i . 

 b. Find the solutions to x2 − 6x + 13 = 0 . Describe the relationship 
between the two solutions. 
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 c. Determine four complex-number solutions for an equation of the 
form ax 4 + bx3 + cx 2 + dx + e = 0  that result in coefficients that 
are real numbers. Give the values of these coefficients. 

 3.3 If 2 + 3i , 2, and –5 are solutions to the polynomial equation 
x4 − x3 + cx 2 + 79x −130 = 0 , determine the value of c. Describe how 
you made this determination. 

 3.4 Write a paragraph describing the different numbers of real solutions 
that are possible for sixth-degree polynomial equations of the form 
ax 6 + bx5 + cx 4 + dx3 + ex 2 + fx + g = 0 , where the coefficients are 
real numbers and a ≠ 0 . 

* * * * * 
 3.5 a. Explain why finding the zeros for y = x3 − 12x +16  is equivalent 

to solving the equation x3 = 12x −16 . 
 b. Describe how the zeros of y = x3 − 12x +16  can be interpreted 

using each of the following graphs: 

   
 c. Changing the constant in the equations graphed in Part b will 

change the zeros of the equation. Suppose that the constant is 
changed from 16 to 10, resulting in the equation y = x3 − 12x +10
. 

 1. Predict the number of times that the graph of y = x3  intersects 
the graph of y = 12x −10 . 

 2. Predict the number of real zeros for y = x3 − 12x +10 . 

 3. Confirm your predictions by finding the zeros for y = x3 − 12x +10 . 

 d. In Part b, the graph of y = x3 − 12x +16  is tangent to the x-axis at one 
point, while the graph of y = 12x −16  is tangent to y = x3  at one 
point. 

   Use the graphs to predict how the zeros of y = x3 − 12x +16  
would change if the constant 16 is increased. 

–10
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y

x
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y

x
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2–24 4

20y = x3 − 12x +16

y = x3

y = 12x −16
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 e. Given an equation of the form y = ax3 + bx2 + cx + d , there are 
three possible cases for the roots of the equation. For each of these 
cases, sketch the graph of y = ax3 + bx2 + cx + d  on one set of 
axes. Sketch the corresponding graph of y = ax3 + bx2  and 
y = −cx − d  on a second set of axes. Then describe the types of 
roots represented by the graphs. 

* * * * * * * * * * 
 
 

Activity 4 
 
The use of the word imaginary reflects some of the original uneasiness that 
mathematicians had with numbers involving −a , where a is a positive real 
number. However, the phrase “imaginary numbers” seems inappropriate in 
today’s world, where such numbers are routinely used in analyzing electrical 
circuits, in cartography, and in quantum mechanics. 

Mathematics Note 
Swiss clerk Jean Robert Argand (1768–1822) and Danish mathematician Caspar 
Wessel (1745–1818) were the first two people to graph complex numbers on a 
plane. They represented a complex number a + bi  as an ordered pair (a,b) where 
a is the real part and b is the imaginary part. 
 Each complex number can be graphed as a point in the complex plane. Any 
point on the horizontal axis is a real number and any point on the vertical axis is a 
pure imaginary number. 
 For example, Figure 3 shows the graphs of the ordered pairs (2,3), (0,3), (3,0) 
and (4,–3), which represent the complex numbers 2 + 3i , 0 +3i , 3 + 0i  and 4 − 3i
, respectively. 

 
Figure 3: The complex plane 
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(4,–3)

i
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Exploration 
Argand’s geometric interpretation of complex numbers provides many advantages 
when exploring the complex-number system. 
 a. Graph a complex number of the form a + 0i  on the complex plane. 
 b. 1. Multiply the number by i and graph the result as a point. 
 2. Multiply the result from Step 1 by i and graph the resulting point. 

Continue this process of multiplying by i to obtain two more 
points. 

 c. Make a conjecture about the effects of multiplying by i with respect to 
the movement of a point on the complex plane. 

 d. 1. Predict the result of multiplying a + 0i  by –i . 
 2. Test your prediction by repeating Parts a and b using the factor –i . 
 e. 1. Multiply  by i. 
 2. Does your conjecture from Part c appear to apply to all complex 

numbers? If not, revise it so that it does. 

Discussion 
 a. Describe the transformation that occurs when a complex number is 

multiplied by each of the following: 
 1. i  
 2. –i  
 b. How do the transformations in Part a affect the ordered pair that 

represents a + 0i ? 
 c. Describe what occurs when 0 + 0i  is multiplied by –i . 

Assignment 
 4.1 a. Multiply the complex number 3 + 2i  by the each of the following 

numbers. Write the products as ordered pairs. 
 1. i  
 2. i2  
 3. i3  
 4. i4  
 b. Plot the products from Part a in the complex plane. What is the 

geometric relationship among these points? 
 4.2 Describe how complex conjugates are related in terms of their graphs 

in the complex plane. 
 

a + bi
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 4.3 a. Let u = 4 + 9i  and v = 5 + 4i . Find u + v  and u − v . 
 b. Graph the four complex numbers from Part a, u, v, u + v , and 

u − v  as ordered pairs on the complex plane. 
 c. Define the addition and subtraction of complex numbers a + bi  

and c + di  using ordered pairs. 

 4.4 a. Consider the polynomial equation x3 − x2 + x −1 = 0 . Determine 
which of the following are solutions to this equation: 1, –1, i, or –i. 

 b. Rewrite x3 − x2 + x −1 = 0  as a product of factors in the form 
(x − k ) where k is a root of the equation. 

 c. Multiply the factors to verify your response to Part b. 
* * * * * 

 4.5 Julia sets are sets of complex numbers that often make interesting 
patterns when graphed on the complex plane. Julia sets are generated 
by the recursive formula: an + bni = (an−1 + bn −1i)

2 + a1 + b1i , where n is 
a natural number. 

 a. The second term of the Julia set where a1 + b1i = 2 + 3i  is: 

a2 + b2i = (2 +3i)2 + 2 + 3i

= 4 + 6i + 6i + 9i2 + 2 + 3i
= −3 +15i

 

  Find the third term of this Julia set. 
 b. In order to create a scatterplot of a Julia set using technology, each 

term is written as an ordered pair. The first two terms of the Julia 
set from Part a can be written as (2,3) and (–3,15). Write the third 
term of this Julia set as an ordered pair. 

 c. 1. Expand the recursive formula for Julia sets, writing the result 
in the form indicated below: 
an + bni = (an−1 + bn −1i)2 + a1 + b1i

= real part + imaginary part
 

 2. Write the nth term as an ordered pair in the form (an ,bn ) . 

 d. For certain values of a1 and b1 , the scatterplots of Julia sets make 
interesting patterns. For example, the following graph shows a 
scatterplot of the first 400 terms of the Julia set where a1 = −0.63 
and b1 = −0.37 : 
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   The table below shows the first six terms (rounded to the 

nearest 0.0001) of the Julia set with a1 = −0.63  and b1 = −0.37 . 

Term Number 
(n) 

Real Part 
(an ) 

Imaginary Part (bn
) 

1 –0.63 –0.37 
2 –0.3700 0.0962 
3 –0.5024 –0.4412 
4 –0.5723 0.0733 
5 –0.3079 –0.4539 
6 –0.7412 –0.0906 
  !    !    !  

 
 1. Use a spreadsheet to extend the table to 200 terms. 
 2. Create a scatterplot of the ordered pairs (an ,bn )  on the 

complex plane. 
 e. Small changes in the first term of a Julia set result in a 

dramatically different set. 
 1. Create a scatterplot of the first 200 terms of the Julia set 

where a1 = −0.63  and b1 = −0.38. 

 2. Create new scatterplots by making small modifications in a1 and b1 . 

 f. The table below shows the first terms in some other Julia sets. Use 
these first terms to explore patterns in the resulting scatterplots. 

a1 b1  
0.2477 0.56 

–0.61 –0.405 
0.29 0.45 

–1.195 0.45 
–1.2 0.15 

–0.4

–0.2

–0.8 –0.2
x

i

0.0
0.0
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 4.6 Consider the set of matrices of the form below, where a and b are real 
numbers. 

a b
−b a
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

 a. Show that this set of matrices has the closure property under 
addition. In other words, show that if any two matrices in this set 
are added together, the sum is a matrix from the set.  

 b. Show that the set of matrices is closed under multiplication. 
 c. Find an additive identity and a multiplicative identity for this set 

of matrices. 
 d. Find the multiplicative inverse of the following matrix, if it exists: 

a b
−b a
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

 e. The arithmetic of the set of matrices defined in Parts a–d behaves 
almost exactly the same as arithmetic with real numbers. 
However, this arithmetic has one property that arithmetic with real 
numbers does not. Square the following matrix and describe how 
the result compares to the multiplicative identity for the set of 
matrices. 

0 1
−1 0
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

 f. Considering your results in Part e, the arithmetic of this set of 
matrices behaves like the arithmetic of the set of complex 
numbers. Now suppose that every complex number of the form 
a + bi  can be identified with the matrix 

a b
−b a
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

  What is the matrix representation of the complex number 0 + i ? 
 g. Recall that multiplication by a matrix of the form below produces 

a rotation of θ  about the origin. 
cosθ − sinθ
sinθ cosθ
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

  What matrix produces a 90˚ rotation about the origin? 
 h. Compare the matrices found in Parts f and g. 

* * * * * * * * * * 
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Activity 5 
 
In Activity 4, you used ordered pairs of the form (a,b) to represent complex 
numbers. However, when performing multiplication of complex numbers, it can 
be more convenient to use their trigonometric form. Using the trigonometric 
form also can simplify finding powers of complex numbers. 

Mathematics Note 
Figure 4 shows the complex number a + bi  represented as the ordered pair (a,b) . 

 

Figure 4: Graph of a + bi  
A complex number a + bi  can be written in trigonometric form as follows: 

a + bi = (r cosθ) + (rsinθ )i = r(cosθ + isin θ)  

 The value of r is the absolute value or modulus of the complex number and is 
determined by r = a2 + b2 . Note that r is always a non-negative number. 
 The angle θ  is an argument of the complex number and is measured from the 
positive portion of the real axis. Angles generated by counterclockwise rotations 
are assigned positive measures; those generated by clockwise rotations are 
assigned negative values. The ray passing through the point (a,b)  representing 
the number a + bi  is the terminal ray of the argument. 

 For example, consider the complex number 3 + i  represented by the point 
3,1( ). Using right-triangle trigonometry, an argument is θ = tan −1 1 3( ) = π 6 . 

The absolute value is r = 3( )2 +12 = 4 = 2 . Therefore, the trigonometric 
form of 3 + i  is: 

2 cos
π
6

+ isin π
6

⎛ 
⎝ 

⎞ 
⎠  

 

b 

a x

i

r

(a,b)

θ
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 Because θ  can be any angle measured from the positive portion of the real axis 
whose terminal ray contains 3,1( ), the trigonometric form of 3 + i  is not 
unique. In this case, θ  can be any angle of the form θ = π 6 + 2nπ , where n is an 
integer. Two additional representations of 3 + i  in trigonometric form are 
2 cos 13π 6( ) + isin 13π 6( )( ) , where θ = π 6 + 2π , and 
2 cos −11π 6( ) + i sin −11π 6( )( ) , where θ = π 6 − 2π . 

Exploration 1 
 a. The following complex numbers are written in the form a + bi . 

Evaluate tan −1 b a( ) for each number. Use the resulting angle measure 
to determine an argument of the given number. 

 1. 1 + 3i  
 2. −1 + 3i  
 3. −1 − 3i  
 4. 1 − 3i  
 b. Determine the measure of two additional positive arguments and two 

additional negative arguments for each of the complex numbers in Part 
a. 

Discussion 1 
 a. Given the complex number a + bi , in which quadrants can the point 

(a,b)  lie if θ = tan−1 b a( ) is an argument of a + bi ? 

 b. If θ = tan −1 b a( )  is not an argument of a + bi , how can an argument 
be determined using tan −1 b a( )? 

 c. Describe the methods you used to determine the additional positive 
and negative arguments in Part b of Exploration 1. 

Mathematics Note 
If the graph of the complex number a + bi  is in the first or fourth quadrants, 
θ = tan −1 b a( )  is an argument of the number and every argument is represented 
by the expression θ = tan −1 b a( ) + 2nπ , where n is any integer. 

 For complex numbers represented by points in the second and third quadrants, 
arguments have the form θ = tan−1 b a( ) + π( ) + 2nπ , where n is an integer. 

 For example, the graph of the complex number −2 + 2i  is in the second 
quadrant. In this case, its arguments can be found as follows, where n is an 
integer: 

θ = tan−1 2 −2( ) + π( ) + 2nπ = 3π 4 + 2nπ  
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Exploration 2 
In Activity 4, you learned that points on the complex plane are rotated when 
multiplied by i or –i. In this activity, you multiply complex numbers to discover 
other patterns. 
 a. Multiply each of the following pairs of complex numbers. Plot each 

pair of complex numbers and their product as points on a complex 
plane. 

 1. v = 2 + i  and s = 2 + 3i  
 2. t = 0 + 2i  and u = –1 + i  
 3. m = –1 + 2i  and w = –2 − i  
 4. g = 3 + 2i  and h = 2 + 4i  

 b. For each complex number in Part a, determine its absolute value, as 
well as an argument (to the nearest 0.01 radians) between −2π  and 
2π . Leave the absolute value in radical form, even if the square root 
is an integer. Record these values in a table with headings like those in 
Table 1 below. 

  Table 1: Complex numbers and their products 

Number a + bi  Absolute Value Argument 
v 2 + i    
s 2 + 3i    
v • s     

t 0 + 2i    
u –1+ i    
t •u     
m    
w    

m • w     
g    
h    

g • h    
 
 c. Select at least three conjugate pairs of complex numbers. Repeat Parts 

a and b using these pairs. 
 d. 1. Use a symbolic manipulator to verify the following rule for 

multiplying complex numbers in trigonometric form: 

   a cos x + i sin x( )[ ]• b cos y + isin y( )[ ] = ab cos x + y( ) + isin(x + y[ ] 
 2. Using the terms absolute value and argument, describe the rule for 

multiplying complex numbers in trigonometric form. 
 3. Determine if this rule is illustrated in Table 1. 
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 e. 1. Write 1 − i  and −2 + i  in trigonometric form, rounding both r and 
θ to the nearest 0.01. 

 2. Use the rule from Part d to multiply the trigonometric forms of 
1 − i  and −2 + i . 

 3. Write the product in the form a + bi . 
 4. Use the distributive property to multiply 1 − i  and −2 + i . 
 5. Compare the products in Steps 2 and 4. 

Discussion 2 
 a. Describe the relationship between conjugates when they are expressed 

in trigonometric form. 
 b. What is the argument of the product when a complex number and its 

conjugate are multiplied? 
 c. Is multiplication of complex numbers in trigonometric form 

commutative? Justify your response. 
 d. Compare the process of multiplying complex numbers in the form 

a + bi  with the process of multiplying the same numbers in 
trigonometric form. 

Assignment 
 5.1 The complex numbers in Parts a–c are given in trigonometric form. 

Multiply each number by its respective conjugate and write the 
products in trigonometric form. 

 a. 3 cos π 12( ) + isin π 12( )( )  

 b. 11 cos 8.83( ) + i sin 8.83( )( ) 

 c. 7 cos −π 15( ) + i sin −π 15( )( ) 
 5.2 Use the rule developed in Exploration 2 to multiply the following 

pairs of complex numbers. Write each product in trigonometric form. 

 a. 3 cos π 4( ) + isin π 4( )( ) and 2 cos 8.85( ) + i sin 8.85( )( )  

 b. r1 cosθ1 + isin θ1( )  and r2 cosθ2 + i sinθ2( )  
 5.3 The ordered pairs (–1,2) and (3,–2) represent two complex numbers 

on the complex plane. 
 a. Find their product using two different methods. 
 b. Compare the results and explain any differences you observe. 
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 5.4 Multiplication by the complex number 2 cos π 6( ) + i sin π 6( )( )  can be 
thought of as a dilation by a scale factor of 2 and a rotation of π 6  
with center at (0,0). What complex number produces the same dilation 
but the opposite rotation? Describe the relationship between these two 
numbers. 

 5.5 a. Evaluate 3 − 4i( )2  by converting the expression to trigonometric 
form before multiplying. 

 b. Find the trigonometric form of 3 − 4i( )3  by multiplying the 
trigonometric form of 3 − 4i( )2  by the trigonometric form of 
3 − 4i( ) . 

 c. Write 3 − 4i( )5  in trigonometric form. 

 d. Express 3 − 4i( )n , where n is an integer, in trigonometric form. 

 5.6 Given that the trigonometric form of a + bi  is r cosθ + i sinθ( ) , write 
the trigonometric forms of a + bi( )2 , a + bi( )3 , a + bi( )4 , and a + bi( )n . 

* * * * * 
 5.7 In previous modules, you have used several different methods to draw 

regular polygons. In this assignment, you investigate another way to 
construct regular polygons. 

 a. Consider the complex number 3 + 4i . What is the modulus r of 
this number? 

 b. Plot the complex number 3 + 4i  on a grid. 
 c. What is the radius of the circle with center at the origin that 

contains the point 3 + 4i ? 
 d. What is the measure θ  of a central angle of a regular pentagon? 
 e. To construct a regular pentagon with the point representing 3 + 4i  

as one of the vertices, one could rotate the point (and its 
successive images) by θ , with center at the origin. 

   To do this, multiply 3 + 4i  by a complex number in the form 
cosθ + i sinθ . Plot the coordinates of the product. Continue this 
process to find the five vertices of the regular pentagon. 

 5.8 Use the process described in Problem 5.7 to construct a regular 
hexagon whose sides measure 3 units. 
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 5.9 When designing circuits for use with alternating current, electrical 
engineers use the complex-number form of Ohm’s law: 

I = V
Z

 

  where I is the effective current (a measure of the number of electrons 
moving in the wires), V is the effective voltage (a measure of the force 
moving the electrons), and Z is the impedance (a measure of the 
resistance to the flow of electrons caused by magnetic fields). In this 
relationship, I, V, and Z are complex numbers. 

   In Parts a–c, write each response in the same form as the original 
numbers. 

 a. Determine the effective voltage in a circuit if the effective current is 
4 cos π 18( ) + i sin π 18( )( ) and the impedance is 29 cos π 9( ) + i sin π 9( )( )
. 

 b. Find the effective current in a circuit if the effective voltage is 
120 cos0 + i sin0( ) and the impedance is 44 cos 11π 36( ) + isin 11π 36( )( ). 

 c. Find the impedance of a circuit when the effective voltage is 
77 + 77i  and the effective current is 2.9 − 0.35i . 

* * * * * * * * * * 
 
 

Activity 6 
 
Using the trigonometric form of a complex number, you can explore some other 
interesting properties of complex numbers. 

Mathematics Note 
De Moivre’s theorem states that the non-zero powers of any complex number 
a + bi  can be found in the following manner: 

a + bi( )n = r cosθ + i sinθ( )[ ]n = r n cosnθ + i sinnθ( )  

 Abraham De Moivre (1667–1754) developed this theorem for positive integer 
values of n. Later work found it to be true for all real-number values of n. For 
example,  

(2 +0i)3 = [2(cos0̊ +i sin0˚)]3 = 23(cos(3•0) + i sin(3 •0))  
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Exploration 
In previous activities, you examined the square roots of negative numbers. In this 
activity, you investigate some additional roots of complex numbers. 
 a. 1. Graph 2 cos0 + i sin0( )  on a complex coordinate plane. 

 2. On the same plane, graph the image of 2 cos0 + i sin0( )  under a 
counterclockwise rotation of π 2  with center at (0,0). 

 3. Repeat Step 2 with each new image until points begin to repeat. 
Using this process, determine the coordinates of each unique point 
generated. 

 b. 1. Describe the geometric relationships among the points in Part a. 
 2. Determine the trigonometric form of the complex number 

represented by each point. 
 c. Use De Moivre’s theorem to raise each complex number in Part b to 

the fourth power. Convert each result to a number in the form a + bi . 
 d. 1. If the graph of the complex number 2 cos0 + i sin0( )  represents 

one vertex of a regular pentagon centered at the origin, determine 
the angle of counterclockwise rotation about the origin required to 
locate the next consecutive vertex of the pentagon. 

 2. Determine the complex numbers that correspond to the five vertices 
obtained by repeating this rotation on each image. Write these 
numbers in trigonometric form. Note: Save this data for use in the 
assignment. 

 e. Use De Moivre’s theorem to raise each complex number from Part c 
to the fifth power. Convert each result to a number in the form a + bi . 

 f. Select any complex number a + bi  where a ≠ 0  and b ≠ 0 . Determine 
the cube roots of this number and write them in trigonometric form. 

 g. Graph the cube roots found in Part f on the complex plane. Describe 
any geometric relationship among these points. 

Mathematics Note 
From the fundamental theorem of algebra, the equation xn − z = 0  has n roots in 
the set of complex numbers. 

 For example, x3 − 8 = 0  has roots 2, −1 + i 3 , and −1 − i 3 . The solutions to 
this equation are the cube roots of 8. Thus, there are 3 cube roots of 8 in the set of 
complex numbers. In a similar manner, there are 4 fourth roots of 8 and 5 fifth 
roots of 8. In general, there are exactly n distinct nth roots of any complex 
number. 
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Discussion 
 a. Describe the significance of your results in Part c of the exploration in 

terms of the fourth roots of a number. 
 b. Describe the significance of your results in Part e of the exploration in 

terms of the fifth root of a number. 
 c. Using the examples from the exploration, describe the relationship 

between the modulus of a complex number in trigonometric form and 
the modulus of its roots in trigonometric form. 

 d. Using the examples from the exploration, describe the relationship 
between the argument of a complex number and the argument of its 
roots. 

 e. 1. When θ = 0 , what is r(cosθ + isinθ )? 

 2. When θ = π 2 , what is r(cosθ + isinθ )? 

 f. What effect did the initial value of θ have on the polygons formed in 
the exploration? 

Mathematics Note 
If a complex number z = a + bi  is written as z = r(cosθ + i sinθ ) , then the nth 
roots of z can be found using the following formula: 

zn = rn cos
θ
n

+
k • 2π
n

⎛ 
⎝ 

⎞ 
⎠ + i sin

θ
n

+
k •2π
n

⎛ 
⎝ 

⎞ 
⎠ 

⎛ 
⎝ 

⎞ 
⎠ 

 

where k = 0,  1, 2,  …,  n −1. There will be exactly n of these roots. 
 For example, z = 8 + 0i  can be written as z = 8 cos0 + i sin 0( ). The three cube 
roots of z are: 

r1 = 2 cos 0
3

+
0 • 2π
3

⎛ 
⎝ 

⎞ 
⎠ 

+ i sin 0
3

+
0 • 2π
3

⎛ 
⎝ 

⎞ 
⎠ 

⎛ 
⎝ 

⎞ 
⎠ 

= 2 cis 0π
3

⎛ 
⎝ 

⎞ 
⎠ 

= 2 + 0i

r2 = 2 cos
0
3

+
1• 2π
3

⎛ 
⎝ 

⎞ 
⎠ + i sin

0
3

+
1• 2π
3

⎛ 
⎝ 

⎞ 
⎠ 

⎛ 
⎝ 

⎞ 
⎠ 

= 2 cis
2π
3

⎛ 
⎝ 

⎞ 
⎠ ≈ –1+1.73i

r3 = 2 cos
0
3

+
2 • 2π
3

⎛ 
⎝ 

⎞ 
⎠ + i sin

0
3

+
2 •2π
3

⎛ 
⎝ 

⎞ 
⎠ 

⎛ 
⎝ 

⎞ 
⎠ 

= 2 cis
4π
3

⎛ 
⎝ 

⎞ 
⎠ ≈ –1−1.73i
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Assignment 
 6.1 a. Evaluate 2 3 + 2i( )3  using the distributive property. 

 b. Convert 2 3 + 2i  to trigonometric form and cube it using 
De Moivre’s theorem. Round the argument to the nearest 
0.001 radians. 

 6.2 The 4 fourth roots of 81 are evenly spaced on a circle in the complex 
plane centered at the origin.  

 a. What is the radius of the circle? 
 b. By how many radians are consecutive roots separated? 
 c. Graph all 4 fourth roots. Include the circle containing the vertices 

in your graph. 
 d. Write each fourth root in the form a + bi . 
 6.3 a. Pick a complex number of the form a + bi  where a ≠ 0  and b ≠ 0

. 
 b. Find the three cube roots of this complex number. 
 c. Write each cube root in trigonometric form. 
 d. Sketch a graph of the cube roots on a complex coordinate plane. 

 6.4 Solve the equation z8 = −2 + 3i  for z and write the roots as ordered 
pairs (a,b). 

 6.5 One of the cube roots of 64 is 4, which can be written as 
4 cos0 + 4i sin0 . 

 a. The point (4,0) in the complex plane represents the complex 
number 4 cos0 + 4i sin0 . Determine the counterclockwise rotation 
of the point (4,0) about the origin required to locate the next 
consecutive cube root of 64. 

 b. Graph the three cube roots of 64 on the complex plane. 
* * * * * 

 6.6 a. Find the three cube roots of 1 in the form r(cosθ + isinθ )  and 
write each cube root in the form a + bi . 

 b. Verify that the roots obtained are in fact cube roots of 1. 

 6.7 a. If the graph of 3 cos 3π 4( ) + isin 3π 4( )( )  defines one vertex of a 
regular octagon centered at the origin of the complex plane, what 
numbers correspond to the other seven vertices? 

 b. What do the complex numbers corresponding to each vertex of 
this octagon represent? 

* * * * * * * * * * 
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Research Project 
 
Besides introducing the imaginary unit i, Swiss mathematician Leonhard Euler 
made many other contributions to mathematics. Read more about Euler’s life and 
work. Complete the following tasks in your report. 
 a. Describe Euler’s formula. 
 b. Explain how Euler’s formula can be used to represent complex 

numbers in exponential form. 
 c. Show how substituting π into Euler’s formula results in a natural 

logarithm for –1. 
 d. Demonstrate that natural logarithms of negative numbers exist in the 

set of complex numbers. 
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Summary 
Assessment 

 
 1. Write a paragraph describing the number of real roots possible for the 

equation   anx
n + an −1x

n−1 +!+ a1x + a0 = 0 , where the coefficients are 
real numbers and an ≠ 0 . 

 
 2. a. Use a symbolic manipulator to find the roots of the polynomial 

equation x4 − 2x 3 + x2 + 4x − 6 = 0 . 
 b. Use the results from Part a to express the polynomial 

x4 − 2x 3 + x2 + 4x − 6  as a product of one or more polynomials 
such that the constant term in each factor is: 

 1. a complex number 
 2. a real number 
 3. a rational number. 
 
 3. According to the binomial theorem: 

  
  

(a + b)n = C(n, n) •anb0 +C(n, n −1) • an−1b1 +C(n, n − 2) • an−2b2

+! + C(n,1) • a1bn−1 + C(n, 0)• a0bn
 

  where C(n, r)  is the combination of n things, taken r at a time. 

 a. Expand (1 + i)8  using the binomial theorem. 

 b. Simplify the expression from Part a. 
 c. Write (1 + i)  in trigonometric form. 

 d. Use the trigonometric form to evaluate (1 + i)8 . Write the result in 
standard form. 

 e. Compare the binomial theorem and De Moivre’s theorem as 
methods for raising complex numbers to a power. 
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 4. The coordinates of the vertices of  in a complex coordinate 
plane are A(2,1), B(4,1), and C(3,2). The image of ΔABC  has vertices 
with coordinates ʹ A (−5,5) , ʹ B (−7, 9) , and ʹ C (−8,6) . 

   The transformation from ΔABC  to Δ ʹ A ʹ B ʹ C  is produced by 
multiplying by the complex number z, then adding z. For example, A 
is transformed to ʹ A  by . 

 a. Plot  and its image in the complex plane. Describe the 
geometric relationship between these two triangles. 

 b. What is the ratio of ʹ A ʹ B AB ? What does this ratio reveal about 
the number z that produced the transformation? 

 c. Find the trigonometric forms of the  and ʹ B − ʹ A . What do 
these reveal about the number z that produced the transformation? 

 d. Find z. Pick a point on  and show that it is transformed 
appropriately. 

  

ΔABC

(2,1)• z + z = (−5, 5)

ΔABC

B− A

ΔABC
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Module 
Summary 

 
 • The imaginary unit is i where i = −1  and i2 = −1 . 
 • A complex number is defined as any number in the form a + bi , where 

both a and b are real numbers. 
 • A pure imaginary number is a complex number a + bi  for which a = 0  

and b ≠ 0 . 
 • A real number is a complex number a + bi  for which b = 0 . 
 • In the set of complex numbers, a + bi = c + di  if and only if a = c  and b = d

. 
 • Complex conjugates are pairs of complex numbers of the form a + bi  and 

a − bi . The sum of complex conjugates is a real number. The product of 
complex conjugates also is a real number. 

 • The reciprocal of a complex number a + bi  is 1 (a + bi) . To express this 
reciprocal in complex form m + ni , it can be multiplied by 

a − bi
a − bi

 

  where a − bi  is the conjugate of a + bi . 
 • A complex number a + bi  can be represented by the ordered pair (a,b) 

where a is the real part and b is the imaginary part. Using the horizontal axis 
as the real axis and the vertical axis as the imaginary axis, this ordered pair 
can be graphed as a point on the complex plane. 

 • Second-degree polynomial equations of the form ax 2 + bx + c = 0  with 
a ≠ 0 , always have two solutions when solved over the complex numbers: 

x =
−b
2a

+
b2 − 4ac
2a

 and x = −b
2a

−
b2 − 4ac
2a

 

  These two solutions make up the quadratic formula. When a, b, and c are 
real numbers and b2 − 4ac < 0 , the solutions are complex and occur in 
conjugate pairs.  

 • The fundamental theorem of algebra states that every polynomial 
equation of degree n ≥ 1 with complex coefficients has at least one root, 
which is a complex number (real or imaginary). 

 • One consequence of the fundamental theorem of algebra is that nth-degree 
polynomial equations have exactly n roots in the set of complex numbers.  
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 • A complex number a + bi  can be written in trigonometric form as: 
r cosθ + risinθ = r cosθ + i sinθ( )  

  The value of r is the absolute value or modulus of the complex number and 
is determined by r = a2 + b2 . Note that r is always a non-negative 
number. The angle θ  is an argument of the complex number and is 
measured from the positive portion of the real axis to the point (a,b)  in the 
complex plane. 

   If the graph of the complex number a + bi  is in the first or fourth 
quadrants, θ = tan −1 b a( )  is an argument of the number and every argument 
is represented by the expression θ = tan −1 b a( ) + 2nπ  where n is any 
integer. 

   For complex numbers a + bi  represented by points in the second and third 
quadrants, arguments have the form θ = tan−1 b a( ) + π( ) + 2nπ  where n is 
any integer. 

 • De Moivre’s theorem states that the powers of any complex number a + bi  
can be found in the following manner:  

(a + bi)n = r cosθ + isinθ( )[ ]n = rn (cosnθ + isin nθ)  

 • Another consequence of the fundamental theorem of algebra is that the 
equation xn − z = 0  has n roots in the set of complex numbers. 

 • If a complex number z = a + bi  is written as z = r(cosθ + i sinθ ) , then the 
nth roots of z can be found using the following formula: 

 zn = rn cos
θ
n

+
k • 2π
n

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ + i sin θ

n
+
k •2π
n

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

  where k = 0,  1, 2,  …,  n −1. There will be exactly n of these roots. 
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