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Changing the Rules Changes the Game 

Introduction 
About 300 B.C., the Greek mathematician Euclid recorded a set of basic notions 
and axioms for geometry. Axioms are statements that are assumed to be true. 
Euclid’s axioms described the properties of geometric figures and the 
relationships among them, including the concepts that a line is straight, that lines 
could be parallel, and that there is only one parallel line to a given line through a 
point not on the line (called the Parallel Postulate). 
 Since Euclid’s era, his ideas about geometry have become a part of our 
everyday lives. But what would happen to a geometry if its basic notions were not 
those described by Euclid? For example, Euclid tacitly assumed that a line had 
infinitely many points. This is not the case in finite geometries. 
 To understand the coordinate system associated with a finite geometry, you 
must be able to perform arithmetic using a finite set of integers. One place to 
explore finite arithmetic systems is on the face of a clock. These arithmetic 
operations on a clock then can be linked to a non-Euclidean finite geometry. In 
this module, you investigate some properties of a finite geometry and a finite 
arithmetic. 

Exploration 
In clock arithmetic, an n-hour clock contains the digits 1, 2, 3, ..., n. In such a 
system, addition is accomplished by moving clockwise around the dial, while 
subtraction is accomplished by moving counterclockwise around the dial. 
 a. Draw a 12-hour clock face. 
 b. 1. Describe a method for representing integers greater than 12 on a 

12-hour clock. 
 2. Describe a method for representing integers less than 1 on a 

12-hour clock. 
 3. Use your method to determine the 12-hour clock values for 15 and –5. 
 c. To distinguish the symbols for operations in clock arithmetic from those 

used in real-number arithmetic, they are often drawn with circles around 
them. The symbol ⊕ , for instance, indicates clock addition. On a 12-hour 
clock, 11 hours after 4 o’clock can be symbolized as 4 ⊕11 , or 3 o’clock. 
Similarly, 3 hours before 2 o’clock can be written as 2  3, or 11 o’clock. 

 1. Describe a method to represent addition of integers on a 12-hour 
clock. 

 2. Describe a method to represent subtraction of integers on a 12-
hour clock. 

 3. Use your method to determine the sum 8⊕7  and the difference 5  
10. 
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 d. In real-number arithmetic, 0 is the additive identity since, for any real 
number a, a + 0 = 0 + a = a. 

   An additive identity also exists for 12-hour clock arithmetic. 
Determine its value. 

 e. In real-number arithmetic, multiplication can be thought of as 
“multiple additions.” This is also the case in 12-hour arithmetic. For 
example, the multiplication 7⊗3  can be considered as shown below: 

7⊗3 = (7⊕7)⊕ 7
= 2⊕7
= 9

 

 1. Determine the value of 4 ⊗2  in 12-hour arithmetic. 
 2. Determine the value of 4 ⊗5 in 12-hour arithmetic. 

Discussion 
 a. Compare the method you described for representing positive and 

negative integers on a 12-hour clock with others in your class. 
 b. What number is the additive identity for 12-hour arithmetic? Justify 

your response. 
 c. 1. Two numbers are said to be additive inverses if their sum is the 

additive identity. Identify an additive inverse for each number in 
12-hour arithmetic. 

 2. In real-number arithmetic, each number has exactly one additive 
inverse. Is the corresponding statement true in 12-hour arithmetic? 
Justify your answer. 

 d. In real-number arithmetic, 1 is the multiplicative identity since, for 
any real number a, a • 1 =1 •a = a . 

   A multiplicative identity also exists for 12-hour arithmetic. What 
number do you think is this identity? Explain your response. 

 e. Two numbers are said to be multiplicative inverses if their product is 
the multiplicative identity. Do you think that each number in 12-hour 
arithmetic has a multiplicative inverse? If so, identify the 
multiplicative inverse for each number on a 12-hour clock. If not, 
describe a number that does not have a multiplicative inverse. 
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Activity 1 
 
To explore other finite arithmetic systems, mathematicians developed modular 
arithmetic. Modular arithmetic can provide some basic tools for exploring finite 
geometries. In this activity, you examine modular arithmetic and determine some 
of its properties. 

Mathematics Note 
The modular arithmetic system of modulo n (or mod n) contains the digits 
0, 1, 2, 3, ..., n −1 . For example, a modulo 8 (or mod 8) clock contains the 
numbers 0, 1, 2, 3, 4, 5, 6, and 7. 
 Like clock arithmetic, modular arithmetic can be thought of as taking place on 
a circular dial, as shown in Figure 1 below. 

 
Figure 1: Mod n clock 

Exploration 1 
One way to visualize a modular arithmetic system is to consider a number line of 
integers “wrapped” around a mod n clock. Using this analogy, you can determine 
which modulo n values correspond with each integer on the number line. 
 For example, the integer 0 on the number line corresponds with 0 on the 
modulo clock. Moving clockwise around the clock face corresponds to moving 
along the positive portion of a number line. 
 a. Sketch a circle on a sheet of paper. Mark and label the circle to form a 

modulo 5 clock. 

0 1
2
3
4

modulo n
clock

n − 3

n −1
n − 2

n − 4
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 b. 1. Use your mod 5 clock from Part a to complete Table 1 for the 
integers 0 through 12. 

  Table 1: Integers and their corresponding mod 5 values 

Integer on Number Line Mod 5 Value 
0 0 
1  
2  
  !   

12  
 
 2. Moving counterclockwise around the modulo clock face 

corresponds to moving along the negative portion of a number line. 
Use this notion to complete Table 1 for the integers –1 through –
12. 

 c. By examining the values in Table 1, you should observe that the same 
mod 5 value corresponds with more than one integer. 

 1. To help visualize this relationship, create a scatterplot of the data 
in Table 1. Represent the integers along the x-axis and the 
corresponding mod 5 values along the y-axis. 

 2. Use the scatterplot to identify all the integers from –12 to 12 that 
correspond with the same value in mod 5. 

 d. In Part c, you should have observed that 12 and –8 both correspond 
with 2 (mod 5). This fact can also be illustrated using the division 
algorithm. When using the division algorithm, the remainder must be 
a non-negative integer less than the divisor. 

   As shown below, for example, 12 and –8 both have a remainder of 
2 when divided by 5. 

5 12
2

)
R2

−10
2

 

5 −8
−2
)

R2

−(−10)

2

 

  The division algorithm allows you to determine the mod 5 values that 
correspond with large integers. 

   Identify two integers with absolute values greater than 500, one 
positive and one negative, that correspond with the same mod 5 value. 
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Mathematics Note 
In modulo n, two integers are congruent (symbolized by ≡ ) if they have the same 
remainder when divided by n. 
 In mod 5, for example, the integers 12 and 2 are congruent because 12 divided 
by 5 and 2 divided by 5 both have a remainder of 2. This can be written 
symbolically as 12 ≡ 2 (mod 5) . 

Discussion 1 
 a. How is congruence illustrated on the scatterplot you created in Part c of 

Exploration 1? 
 b. Describe the process you would follow when using the division algorithm 

to determine the congruent mod n value of a negative number. 
 c. Wrapping a number line of integers around the mod 5 clock can be 

thought of as a function. What are the domain and range of this function? 

Exploration 2 
In real-number arithmetic, the numbers 1 and 0 play special roles. In this 
exploration, you create addition and multiplication tables and use them to identify 
numbers that play similar roles in mod n arithmetic. You then use these numbers 
to solve some mod n equations. 
 a. Complete Table 2, a table of addition facts for mod 5. 
  Table 2: Addition facts for modulo 5 

+  0 1 2 3 4 
0      
1  2   0 
2      
3    1  
4      

 
 b. Complete Table 3, a table of multiplication facts for mod 5. 
  Table 3: Multiplication facts for modulo 5 

×  0 1 2 3 4 
0      
1  1    
2     3 
3    4  
4      
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 c. Create a table of subtraction facts for mod 5. Each entry in the table 
should represent the row value minus the column value. 

 d. Determine the additive identity for mod 5. 
 e. Identify the additive inverse for each element in mod 5. 
 f. Determine the multiplicative identity for mod 5. 
 g. The multiplicative inverse of x is also referred to as the reciprocal of x. 

For the set of real numbers, 1 x  is the multiplicative inverse of x, for 
x ≠ 0 , since 

x • 1
x
=
1
x
• x = 1 

  The multiplicative inverse of any element x (other than the additive 
identity) can be denoted by x−1 . 

   Identify the multiplicative inverse for each element in mod 5. 

Mathematics Note 
Many of the properties of congruence are comparable to properties of equality. 
 The substitution property of congruence states that if a, b, and c are any real 
numbers with a ≡ b  and b ≡ c , then a ≡ c . 
 The addition property of congruence states that if a, b, and c are any real 
numbers with a ≡ b , then a + c ≡ b + c . 
 The multiplication property of congruence states that if a, b, and c are any 
real numbers with a ≡ b , then a • c ≡ b • c . 

 
 h. Congruences in mod n can be solved using methods similar to those 

used to solve algebraic equations involving real numbers. For 
example, the solution to the congruence 5x − 6 ≡ 4 (mod 7)  is shown 
below. 

  

5x − 6 ≡ 4 (mod 7) given
5x ≡ 4 + 6 (mod 7) addition property of congruence
5x ≡ 3 (mod 7) definition of congruence mod 7

3(5x) ≡ 3(3) (mod 7) multiplication property of congruence
1x ≡ 2 (mod 7) definition of congruence mod 7
x ≡ 2 (mod 7) multiplicative identity

     

   The solution can be checked by substituting 2 into 
5x − 6 ≡ 4 (mod 7) . Since 5(2) − 6 ≡ 3 − 6 ≡ 4(mod 7) , 2 is a solution 
to the equation. 

   Use the process described above to solve the equation 
3x +1 ≡ 2 (mod 4) . Record the justification for each step in your solution. 
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Discussion 2 
 a. Which of the following modular operations are commutative? 
 1. addition 
 2. subtraction 
 3. multiplication 
 b. 1. How can you define division in mod 5 arithmetic? 
 2. Is division commutative in mod 5 arithmetic? Explain your 

answer. 
 c. Consider the following congruence equation: 16 • 6 ≡ x (mod 5) . One 

way to determine a solution that is a mod 5 value is to multiply the 
two factors, then convert the product to mod 5. 

   Is the solution affected by converting both factors to mod 5 before 
multiplying? 

 d. For real numbers, addition and multiplication are both associative. 
This means that for any real numbers a, b, and c: 

(a + b) + c = a + (b + c)  

and 
(a •b) • c = a • (b •c)  

  Are addition and multiplication associative in modular arithmetic? 
 e. For real numbers, multiplication is distributive over addition. In other 

words, for any real numbers a, b, and c: 
a(b + c) = ab + ac  

  Do you think that multiplication (mod 5) is distributive over addition 
(mod 5)? Use an example to illustrate your response. 

 f. 1. Why is there no multiplicative inverse for 2 (mod 6)? 
 2. Because there is no multiplicative inverse for 2 (mod 6), the 

equation 2x − 5 ≡ 4 (mod 6)  has no solution. To verify that this is 
true, substitute each number in mod 6 into the equation. 

 g. 1. Why is there no multiplicative inverse for 3 (mod 6)? 
 2. Although there is no multiplicative inverse for 3 (mod 6), the 

equation 3x ≡ 3 (mod 6)  has three solutions: 1 (mod 6), 
3 (mod 6), and 5 (mod 6). 

   Describe how you might find these solutions. 
 h. Describe some situations in which you might expect to use a modular 

arithmetic. 
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Assignment 
 1.1 Describe how to determine the number in mod 5 that is congruent to 

33. 
 1.2 Calculate each of the following in mod 5: 
 a. 3 + 2  
 b. 12 • 8  
 c. 13 − 20  
 1.3 Complete the following addition and multiplication tables for mod 3. 

+  0 1 2  ×  0 1 2 
0     0    
1     1    
2     2    

 1.4 a. Evaluate each of the following expressions. 
 1. 2 +1 (mod 3)  
 2. 2 • 2 (mod 3)  
 3. 16 + 9 (mod 8)  
 4. 11• 7 (mod 10)  
 b. Find each of the following inverses. 
 1. the additive inverse of 3 (mod 5) 
 2. the additive inverse of 2 (mod 3) 
 3. the multiplicative inverse of 3 (mod 5) 
 4. the multiplicative inverse of 0 (mod 5) 
 1.5 a. What is the additive identity in mod 3? 
 b. Find the additive inverse in mod 3 for each of the following: 0, 1, and 2. 
 c. Recall that proof by exhaustion is the process of examining all 

possibilities to prove a statement. Use proof by exhaustion to show 
that 1 is the multiplicative identity for mod 3. 

 d. Prove or disprove the statement: “Every element in mod 3 has a 
multiplicative inverse.” 

 1.6 Division in modular arithmetic may be defined as follows: 
a ÷ b ≡ c (mod  n)  if and only if b • c ≡ a (mod  n) . Use this definition 
to find each of the following: 

 a. 1 ÷ 2  (mod 5)  
 b. 3 ÷ 2  (mod 5) 
 c. 4 ÷ 0  (mod 5) 
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 1.7 Prove that 2 does not have a multiplicative inverse in mod 4. 
 1.8 Solve for x in each of the following. 
 a.  x + 3 ≡1 (mod 7) 
 b. 4x ≡ 1 (mod 7) 
 c. 3x − 5 ≡ 4  (mod 6) 
 d. 2x + 1 ≡ 0 (mod 3) 

 e. x2 ≡1 (mod 3)  
* * * * * 

 1.9 Solve each of the following equations: 
 a. 11x − 6 ≡ 8 (mod 13) 
 b. 3x + 4 ≡ 5 (mod 11)  
 1.10 A monitoring device uses 0.5 m of paper per hour. Each roll of paper 

is 200 m long. If a new roll is installed at 9:00 A. M., at what time will 
the device run out of paper? 

* * * * * * * * * * 
 
 

Research Project 
 
One common application of modular arithmetic is the Universal Product Code 
(UPC) found on nearly every consumer product. Each UPC bar code represents a 
12-digit number. 
 Figure 2 shows a typical UPC bar code and number. The first number on the 
left (0) identifies the product. The last number on the right (8) is the check digit. 
To make certain that each code is read correctly, bar-code readers (such as those 
at supermarket cash registers) use an algorithm to perform an internal check.

 

 
Figure 2: A UPC bar code 

 For this research project, find an algorithm that performs a check on a bar code. 
Write an explanation of the algorithm. Collect some samples of UPC bar codes 
and verify that the algorithm works. Then create one valid and one invalid UPC 
bar code of your own. 
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Activity 2 
 
In Activity 1, you examined some of the basic principles of modular arithmetic. In 
this activity, you investigate a finite geometry coordinatized with a modular 
arithmetic system. 

Mathematics Note 
Finite geometries are unlike traditional Euclidean geometry because they use 
only finite numbers of points. 
 For example, one finite geometry is based on a modulo 3 arithmetic system. In 
this system, each point of a lattice has coordinates (x,y) where x and y are 
elements of the set {0, 1, 2}. Figure 3 shows the nine-point lattice used to 
construct this finite geometry. 

 
Figure 3: Coordinatized nine-point lattice 

 In this geometry, a line is defined as the set of all points that satisfies a mod n 
equation of the form Ax + By + C = 0 (mod 3)  where A, B, and C are elements of 
the set {0, 1, 2} with A and B not both 0. For example, one line is identified with 
the equation x + y + 0 = 0 (mod 3)  or x + y = 0 (mod 3) . This line contains only 
the points with coordinates (0,0), (2,1), and (1,2). A graph of this line is shown in 
Figure 4. 

 
Figure 4: Graph of the line x + y = 0 (mod 3)  

Although Figure 4 shows the three points on the line connected by an arc, the line 
contains only those three points. There are no other coordinates that satisfy the 
equation. Note: For the remainder of this module, mod n equations will be written 
with equals signs rather than congruence signs. 

(0,2)

(0,1)

(0,0) (1,0) (2,0)

(1,1) (2,1)

(1,2) (2,2)

(0,0)

(1,2)

(2,1)
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Discussion 1 
 a. Compare the characteristics of a line in Euclidean geometry with the 

characteristics of a line in the finite geometry described in the 
previous mathematics note. 

 b. How do these characteristics of a line compare with its characteristics 
in spherical geometry? 

 c. 1. How might a triangle be defined in this nine-point geometry? 
 2. Give an example of a triangle that satisfies your definition. 
 3. How does your definition compare with the definition of a triangle 

in Euclidean geometry? 

Exploration 
In this exploration, you continue to investigate the nine-point geometry described 
in the mathematics note. 
 a. Determine the number of possible equations of the form 

Ax + By + C = 0 (mod 3) . List each of these equations. 

 b. Determine the coordinates of all the points in the nine-point geometry 
that satisfy each equation identified in Part a. 

 c. Graph each of the equations on a copy of the lattice template 
(available from your teacher). Connect each set of points in the 
solution with segments or arcs. 

 d. 1. It is possible for more than one equation to define the same line. 
Identify the equations of the unique lines in this nine-point system. 

 2. Label the points in a nine-point lattice A through I, as shown in 
Figure 5 below. 

 
Figure 5: A nine-point lattice 

 3. Record both the coordinates and the letters that correspond with 
the points which satisfy each unique line. Note: Save this 
information for use in Problem 2.2. 

A

D

G

B

E

H

C

F

I
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 e. Determine if each of the following properties of lines in traditional 
Euclidean geometry is true in this nine-point geometry. 

 1. Two points determine a unique line. 
 2. If two distinct lines contain a common point, they contain exactly 

one common point. 
 f. Lines in a plane are parallel if they have either no points in common 

or all points in common. Are there parallel lines in this geometry? If 
so, identify them. 

 g. According to the Parallel Postulate (mentioned in the introduction), 
there is exactly one line parallel to a given line through a point not on 
that line. 

 1. Select a line in the nine-point geometry and a point not on the line. 
Determine if the parallel postulate is true for your selections. 

 2. Repeat Step 1 for each point not on the line until you have 
checked all appropriate points. 

 3. Select another line in the finite geometry and repeat Steps 1 and 2. 
 4. Repeat Step 3 until all lines have been checked. 

Discussion 2 
 a. What patterns do you observe among the values of A, B, and C in the 

equations of parallel lines? 

Mathematics Note 
In the nine-point geometry, a line given by Ax + By + C = 0  (mod 3), where 
B ≠ 0 , may be expressed in the form y = mx + b  (mod 3)  where m and b are 
elements of the set {0, 1, 2} and m represents the slope of the line. 

 For example, consider the line defined by the equation 1x + 2y +1 = 0  (mod 3)
. This equation may be rewritten using mod 3 arithmetic as follows: 

1x + 2y +1 = 0 (mod  3)
2y = −1x + −1 

2(2y) = 2(−1x + −1)
1y = −2x + −2

 

However, –2 may be rewritten as 1 in mod 3 since – 2 ≡ 1 (mod  3) . Therefore, 
1y =1x +1
y = x +1  

In this case, the slope of the line is 1. 
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 b. When the equation for a line in the form Ax + By + C = 0  (mod 3)  is 
rewritten in slope-intercept form, it becomes: 

y = −
A
B
x −

C
B

 (mod 3) 

 1. Describe the slope of the line when A = 0 . 
 2. Describe the slope of the line when B = 0 . 
 c. In a real-number coordinate plane, the slope of a line can be found 

using the coordinates of two points on the line. Is it possible to 
determine the slope of a line in the nine-point geometry using the 
coordinates of two points on the line? Justify your response. 

 d. Compare the slope of a line in Euclidean geometry to the slope of a 
line in nine-point geometry. 

Assignment 
 2.1 Write each of the distinct equations found in the exploration in the 

form y = mx + b  (mod 3)  or x = a  (mod 3) . 

 2.2 Use the equations in Problem 2.1 and the information you recorded in 
Part d of the exploration to complete the chart supplied by your 
teacher. The following diagram shows one completed cell in the chart. 
Note: Save this chart for use throughout the remainder of this module. 

a. 
(0,0), (0,1), (0,2) 
Equation: 

x = 0  
Graph: 

 
 
 2.3 Consider a line in the nine-point geometry that contains the point (0,1) 

and has a slope of 1. 
 a. Write an equation for the line. 
 b. Use the completed chart from Problem 2.2 to verify your equation 

from Part a and identify the other points on the line. 
 2.4 How many triangles are there in the nine-point geometry? Explain 

your response. 
 2.5 Each row of the chart in Problem 2.2 contains three lines. By 

considering them in pairs, prove that the lines in each row are parallel. 
Recall that in coordinate geometry, two lines are parallel if they either 
have the same slope or both have undefined slopes and are vertical. 
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 2.6 In Euclidean geometry, two lines with non-zero slopes are 
perpendicular when the product of their slopes is –1. A line with an 
undefined slope is perpendicular to a line with a slope of 0. 

 a. Consider two perpendicular lines with non-zero slopes in the 
nine-point geometry. If a comparable definition of perpendicular 
lines is true, what must be the product of their slopes? 

 b. Identify all pairs of perpendicular lines in the nine-point geometry. 
 c. In Euclidean geometry, the following properties involving 

perpendicular lines in a plane are true. 
 1. At a point on a line, there is exactly one line perpendicular to 

the given line. 
 2. From a point not on a line, there is exactly one line 

perpendicular to the given line. 
 3. Two lines perpendicular to the same line are parallel. 
  Determine if these properties are true in the nine-point geometry 

by considering every possible case. 
 2.7 Consider the lines defined by the following mod 3 equations: 

y = 2
y = 2x  

 a. Find the intersection, if any, of these two lines. 
 b. Repeat Part a for the mod 3 equations below: 

y = x
y = 2x  

 2.8 Is every pair of intersecting lines in the nine-point geometry 
perpendicular? Explain your response using a proof. 

* * * * * 
 2.9 Consider a geometry based on a modulo 4 number system in which each 

point of a lattice has coordinates (x,y)  where x and y are elements of the 
set {0, 1, 2, 3}. In this geometry, a line is defined as the set of all points 
on the lattice that satisfies a mod 4 equation of the form 
Ax + By + C = 0 . 

 a. Construct a lattice and graph the equation y = 2x + 3 (mod 4). 

 b. Write the equation (in mod 4) of a line parallel to the line given in 
Part a and containing point (0,0). 

 c. Find the equation (in mod 4) of a line perpendicular to the line 
given in Part a and containing point (0,0). 

 2.10 Does every pair of perpendicular lines in the nine-point geometry 
intersect? Verify your response using proof by exhaustion. 

* * * * * * * * * * 
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Research Project 
 
A triangle with two sides perpendicular is a right triangle. By this definition, the 
points with coordinates (0,0), (0,2), and (2,1) in the nine-point geometry 
determine a right triangle. This fact can be proven as described below. 
 The slope of the line through the points with coordinates (0,0) and (2,1) can be 
calculated as follows: 

1 − 0
2 − 0

=
1
2

 

Since 1 ÷ 2 ≡ 2 (mod 3) , the slope of the line is 2. Similarly, the slope of the line 
through (0,2) and (2,1) is 1. The product of the two slopes is 2. 
 As mentioned in Problem 2.6, two lines with non-zero slopes are perpendicular 
when the product of their slopes is –1. Since –1 is congruent to 2 (mod 3), the 
lines are perpendicular. Therefore, the triangle is a right triangle. 
 A picture of the triangle formed by (0,0), (0,2), and (2,1) is shown in Figure 6. 

 
Figure 6: A right triangle in the nine-point geometry 

 How many other right triangles can be formed in the nine-point geometry? 
 

 
 
 
 

Activity 3 
 
In Activity 2, you investigated a finite geometry using algebra and the coordinates 
of points. In this activity, you explore a finite geometry as an axiomatic system. 
In other words, you use undefined terms, definitions, axioms, and proven 
theorems to describe the system. 
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Mathematics Note 
An axiomatic system is a mathematical system that contains: 
 • undefined terms (terms assumed without definition) 
 • definitions (terms defined using undefined terms and other definitions) 
 • axioms (rules assumed to be true that describe relationships among terms) 
 • theorems (statements proven true using logic) 
 In Euclidean geometry, for example, both line and point are undefined terms. 
The statement, “A line extends indefinitely in two directions” is an axiom, since it 
is assumed to be true. The statement, “The square of the length of the hypotenuse 
of a right triangle is equal to the sum of the squares of the lengths of the legs” is a 
theorem since it can be proven. 

Exploration 
Gino Fano was one of the first mathematicians to study a finite geometry. In 
1892, he built a geometry to satisfy the following five axioms, leaving the terms 
point, line, and on undefined. (In these axioms, the words contains and has also 
are undefined terms.) 
 1. There exists at least one line. 
 2. Every line has exactly three points. 
 3. Not all points are on the same line. 
 4. For any two points, there exists exactly one line that contains 

both of them. 
 5f. Every two different lines have at least one point in common. 

(The f in 5f stands for Fano.) 
In this exploration, you use Fano’s axioms to deduce the properties of his geometry. 
 a. Considering only Axioms 1 and 2, determine the minimum number of 

points in this geometry. Hint: Start listing points by designating each 
one in order with the letters A, B, C, and so on. 

 b. Considering only Axioms 1–3, determine the minimum number of 
points in this geometry. 

 c. Now consider all five of Fano’s axioms. Determine the number of 
points and the number of lines in this geometry. 

 d. Draw a model of Fano’s geometry using the number of points and 
lines from Part c. 
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 e. By changing Fano’s fifth axiom, John Wesley Young developed 
another finite geometry (referred to as “Young’s geometry” in this 
module). Young’s fifth axiom reads as follows: 

 5y. For each line l and each point B not on line l, point B is on one 
line that does not contain any other points from line l. (The y in 
5y stands for Young.) 

  Young’s geometry has nine points. Use a lattice similar to the one 
shown in Figure 7 to draw a model of Young’s geometry. 

 
Figure 7: A nine-point lattice 

Discussion 
 a. In Fano’s geometry, does Axiom 1 tell you that there are any points on 

a line? Does it give any hint about how a line might look? 
 b. What does it mean to say that Fano’s five statements are axioms? 
 c. In either Fano’s or Young’s geometry, is it possible for two distinct 

lines to contain the same two points? Explain your response. 
 d. How does Young’s geometry compare to Fano’s geometry? 

Mathematics Note 
The process of deductive reasoning begins with a hypothesis, then uses a logical 
sequence of valid arguments to reach a conclusion. 
 In mathematical proofs by deductive reasoning, each argument is typically 
supported by an axiom, definition, or previously proven theorem. A direct proof 
makes direct use of the hypothesis to arrive at the conclusion. 
 For example, consider the following statement: “In Fano’s geometry, each 
point on a line is a member of at least three lines.” To prove this statement using a 
direct proof, it should first be restated in if-then form: “If a point is on a line, then 
it is a member of at least three lines.” 

A

D

G

B

E

H
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F
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 Assuming that the hypothesis, “If a point is on a line,” is true, it can be 
symbolized as follows: Point B is on one line, l1. 

 By Axiom 2, l1 must contain two other points: A and C. 

 By Axiom 3, there must exist a point D not on l1. 

 By Axiom 4, there must be a line through points B and D: l2 . 

 From Part c of Discussion 1, both A and B cannot be on l2 . Similarly, both A 
and C cannot be on l2 . By Axiom 2, however, l2  must contain one other point: E. 

 By Axiom 4, there exists a line, l3 , that contains A and D. 

 To satisfy Axiom 2, l3  also must contain a third point, F. 

 According to Axiom 4, another line, l4 , must contain B and F. 

 Lines l1, l2 , and l4  all contain B. Therefore, point B is contained in at least three 
lines. 
 In conclusion, the following statement is true in Fano’s geometry. “If a point is 
on a line, then it is a member of at least three lines.” 

 
 e. How does a theorem differ from an axiom? 
 f. The points and lines used to prove the statement in the mathematics 

note were given arbitrary names. Describe how this helps prove that 
the theorem is true for all points and lines in Fano’s geometry. 

Assignment 
 3.1 Consider the following theorem in Young’s geometry: “For any point, 

there is a line not containing it.” 
 a. Rewrite this theorem as an if-then statement. Identify the 

hypothesis and the conclusion. 
 b. When considering this theorem given any point D and a line m, 

there are two possible cases. If D is not on line m, then there is 
nothing to prove. If D is on line m, the theorem can be proved by 
Steps 1–3 below. Give a reason for each step in this proof. 

 1. Point D is on line m. 
  2. There exists a point E not on line m. 
 3. Through E there is a line l not containing any points of line m. 
 4. In conclusion, given any point, there is a line not containing it. 
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 3.2 For two different lines to be parallel, they must not intersect. In other 
words, the two lines must have no points in common. Prove that there 
are no parallel lines in Fano’s geometry. Begin your proof with the 
hypothesis “Lines l1 and l2  are different lines in Fano’s geometry.” 
Conclude your proof with the statement, “Line l1 is not parallel to l2 .” 

 3.3 In Young’s geometry, prove that every point is contained in at least 
four lines. Draw a sketch to support your proof. 

 3.4 In Young’s geometry, prove that given any line, there is a different 
line parallel to it. 

 3.5 How would your model of Young’s geometry change if a line 
contained four points? 

 3.6 Consider the points in Young’s geometry with coordinates (0,0) and 
(1,1). Do you think that the Pythagorean theorem could be used to find 
the distance between these two points? Explain your response. If so, can 
the distance be expressed in mod 3? 

* * * * * 
 3.7 Use a direct proof to prove the following statement: “If n is an even 

number, then n2  is an even number.” 
 3.8 Use a direct proof to prove the following statement: “If n is an integer, 

then n3 − n  is even.” Hint: you will need to prove two cases, one in 
which n is even and one in which n is odd. 

* * * * * * * * * * 
 
 

Activity 4 
 
In Activity 3, you examined some properties of Fano’s and Young’s geometries 
using proofs by exhaustion and direct proofs. In this activity, you use indirect 
proofs to continue your investigations of these two geometries. 

Exploration 
Indirect proofs are based on the notion of reductio ad absurdum, or “reduction to 
the absurd.” In an indirect proof, the property to be proven true is assumed to be 
false. From this assumption, statements are argued logically with supporting 
reasons (axioms, definitions, and proven theorems) until a contradiction to either 
a known fact or an assumption is reached. If a contradiction can be reached, then 
the assumption must be false. Therefore, the original statement is true. 
 For example, consider a number n that is an even perfect square. In the 
following exploration, you prove that the square root of n also is even using an 
indirect proof. 
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 a. Suppose that m is the square root in question—in other words, that 
m 2 = n . Assume that m is not even. Use an algebraic equation to 
express m in terms of a, another natural number. Your equation should 
show that m is indeed odd. 

 b. Square both sides of the equation from Part a. Is the result an even or 
an odd natural number? 

 c. 1. Can the statement that n is an even perfect square and the result in 
Part b both be true? 

 2. Do you believe that the following statement is true: “The square 
root of an even perfect square also is even”? Explain your 
response. 

Discussion 
 a. What is the negation of the statement: “The square root of 2 is an 

irrational number”? 
 b. In general, the negation of a statement “if p, then q” is “p and not q.” 

How do truth tables verify this relationship? 

Mathematics Note 
In an indirect proof, a statement is proven true by proving that its negation 
cannot be true. 
 For example, consider this statement in Young’s nine-point geometry: “If a line 
intersects one of two parallel lines, then it intersects the other.” This statement 
may be rewritten as follows: “If line l1 is parallel to l2 , and lines l2  and l3  each 
contain point B, then lines l1 and l3  intersect.” 

 To prove this statement using an indirect proof, assume that line l1 is parallel to 
l2 , that lines l2  and l3  each contain point B, and that lines l3  and l1 do not 
intersect. A sketch of this situation is shown in Figure 8. (The three points in each 
line are connected for organizational purposes.) 

 

Figure 8: Sketch created using an assumption 

B

l1

l2

l3
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 If l3  and l1 do not intersect, then l3  and l1 have no points in common because of 
the meaning of non-intersecting. 
 Line l1 is parallel to l2 , by the hypothesis. 

 Point B is on l3  and l2 , by the hypothesis. 

 Now there are two lines, l3  and l2 , that both contain point B and both are 
parallel to l1. This contradicts Axiom 5y, which states that through a point B not 
on a line l, there is exactly one line that has no points in common with the given 
line. 
 Therefore, the assumption that lines l3  and l1 do not intersect must be false 
because this would mean there could be more than one line that has no point in 
common with the given line. Consequently, lines l3  and l1 intersect. 

 In conclusion, the following statement is true: “If a line intersects one of two 
parallel lines, then it intersects the other.” 

Assignment 
 4.1 Consider the following theorem in Young’s nine-point geometry: “If 

two lines intersect, then they intersect in exactly one point.” 
 a. Identify the hypothesis and the conclusion in this statement. 
 b. To prove this statement using an indirect proof, what must you 

assume to be true? 
 c. Sketch a picture of the situation that includes your assumption. 
 d. Which axiom does your assumption contradict? 
 e. What does this contradiction indicate about your assumption? 
 f. What can you now conclude about the theorem to be proved? 

Explain your response. 
 4.2 Prove indirectly the following statement in Young’s geometry: “If two 

lines are parallel to the same line, then they are parallel to each other.” 
Hint: Use the theorem proven in the mathematics note. 

 4.3 Prove that every two different lines in Fano’s seven-point geometry 
have exactly one point in common. Begin your proof with the 
hypothesis that l1 and l2  are different lines. Conclude your proof with 
the statement that lines l1 and l2  have exactly one point in common. 

* * * * * 
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 4.4 The following paragraph provides an indirect proof of the statement, 
“The 2  is an irrational number.” Describe the contradiction which 
shows that the assumption must be false. 

   Assume 2  is a rational number. This means that 2 = p q  
where p and q are whole numbers and p q  is in lowest terms. Square 
both sides of the equation, as shown below: 

 
2( )2 = p q( )2

2q2 = p2
 

  Since p2  is even, p must be even. Since p is even, it can be written in 
the form p = 2r , where r is a whole number. By substitution, 

(2r)2 = 2q2

4r2 = 2q2

2r2 = q2
 

  Since q2  is even, q also must be even. Therefore, the square root of 2 
must be irrational. 

 4.5 Use an indirect proof to prove the following: “If a cash register 
contains $1.45 in nickels and dimes, there must be an odd number of 
nickels.” 

* * * * * * * * * * 
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Summary 
Assessment 

 
 1. a. Construct addition and multiplication tables for mod 4. 
 b. Use these tables to describe the existence of additive inverses, an 

additive identity, multiplicative inverses, and a multiplicative 
identity in mod 4. Use specific examples in your response. 

 2. Consider a four-point geometry that has the following three axioms. 
 • There are exactly four points. 
 • Through any two points there is exactly one line. 
 • Given two points there is exactly one line containing them. 
  In this geometry, the terms point, line, and contains are undefined. 
 a. Draw a model to represent this geometry. 
 b. Create a coordinate system in mod 2 for this geometry. 
 c. Construct addition and multiplication tables for mod 2. 
 d. Find the equations for all distinct lines in this geometry. 
 e. If parallel lines are defined as having no points in common, prove 

that this system has at least three pairs of parallel lines. 
 f. Use a direct proof to prove that any point in the system is 

contained in at least three lines. 

 3. Use an indirect proof to show that if n is an integer and n2  is odd, then 
n is odd. 
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Module 
Summary 

 
 • In clock arithmetic, an n-hour clock contains the digits 1, 2, 3, ..., n. In 

such a system, addition is accomplished by moving clockwise around the 
dial, while subtraction is accomplished by moving counterclockwise around 
the dial. 

 • To distinguish the symbols for operations in clock arithmetic from those 
used in real-number arithmetic, they are often drawn with circles around 
them. The symbol ⊕ , for instance, indicates addition. 

 • A modular arithmetic system of modulo n (or mod n) contains the digits 0, 
1, 2, 3, ..., n −1 . In such a system, addition and subtraction are 
accomplished in a manner similar to clock arithmetic. 

 • In modulo n, two numbers are congruent if they have the same remainder 
when divided by n. The symbol ≡  denotes congruence. 

 • Given a set and the operation of addition defined on that set, an additive 
identity is the unique element a of the set such that when a is added to any 
element x, the result is that element x. In other words, x + a = a + x = x . 

 • Two elements whose sum is the additive identity are additive inverses. In 
other words, b is an additive inverse of x if x + b = b + x = a . The additive 
inverse of x is denoted by –x . 

 • Given a set and the operation of multiplication defined on the set, a 
multiplicative identity is the unique element c of the set such that when 
any element x is multiplied by c, the result is that element x. In other words, 
x • c = c • x = x . 

 • Two elements whose product is the multiplicative identity are 
multiplicative inverses. In other words, d is the multiplicative inverse of x 
if x •d = d • x = c . The multiplicative inverse of any element x (other than 
the additive identity) can be denoted by x−1 . The multiplicative inverse of x 
is also referred to as the reciprocal of x. 

 • The substitution property of congruence states that if a, b, and c are any 
real numbers with a ≡ b  and b ≡ c , then a ≡ c . 

 • The addition property of congruence states that if a, b, and c are any real 
numbers with a = b , then a + c ≡ b + c . 

 • The multiplication property of congruence states that if a, b, and c are 
any real numbers with a = b , then a • c ≡ b • c . 
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 • An axiomatic system is a mathematical system that contains: 
 • undefined terms (terms assumed without definition) 
 • definitions (terms defined using undefined terms and other definitions) 
 • axioms (rules assumed to be true that describe relationships among terms) 
 • theorems (statements proven true using logic). 
 • A finite geometry is an axiomatic system which, unlike traditional 

Euclidean geometry, uses a finite number of points. 
 • The process of deductive reasoning begins with a hypothesis, then uses a 

logical sequence of valid arguments to reach a conclusion. 
   In mathematical proofs by deductive reasoning, each argument is typically 

supported by an axiom, definition, or previously proven theorem. A direct 
proof makes direct use of the hypothesis to arrive at the conclusion. 

 • In an indirect proof, the property to be proven true is assumed to be false. 
From this assumption, statements are argued logically with supporting reasons 
(axioms, definitions, and proven theorems) until a contradiction to either a 
known fact or an assumption is reached. If a contradiction can be reached, 
then the assumption must be false. Therefore, the original statement is true. 
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