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Mathematics in Motion 

Introduction 
The forest is on fire. Crews on the ground are battling the blaze, but they need 
more equipment. The dispatcher orders a plane to deliver a crate of supplies. 
 The crate is designed to be dropped without a parachute. As the plane flies 
toward the target zone, its crew must decide when to drop the crate. To do this, 
however, they must be able to predict the path of the falling crate. In this module, 
you use parametric equations to explore this and other types of motion. 

Discussion 1 
 a. 1. What factors influence the path of a crate during its fall? 
 2. Describe the effect of each of these factors on the crate’s path. 
 b. What do you think the path of a falling crate will look like? 
 c. Should the crew drop the crates when the plane is directly over the 

target area? Explain your response. 

Exploration 
In the following exploration, you investigate the motion of two falling objects: 
one dropped straight down, and one projected horizontally. Both objects begin 
their fall from the same height. 
 a. 1. Fold an index card over a flexible meterstick or ruler. Secure the 

card to the meterstick with a binder clip. 
 2. Fold the index card to form a platform on each side of the 

meterstick, parallel to the ground, as shown in Figure 1. 

   
Figure 1: Two falling objects 

  

binder clip

platforms
(index card)

 
  pull in this 
direction then
    release         

holdhold
meterstick

here
  



180 

 b. 1. Hold the opposite end of the meterstick against the side of a table. 
 2. Place a dense object, such as a coin, on each platform. (Using 

dense objects lessens the effects of air resistance.) 
 3. Measure and record the height of the objects from the floor. 
 4. Pull the free end of the meterstick in the direction indicated in 

Figure 1, then release it. 
 5. Observe the path of each object, and note when each hits the floor. 

Record your observations, including a sketch of each path. 
 c. Repeat Part b two or three times, varying the amount of tension on the 

meterstick. 
 d. Repeat Parts b and c with two dense objects that are not alike. 

Discussion 2 
 a. Compare the paths of the two like objects in Part b of the exploration. 
 b. Did both objects fall from the same height? 
 c. Compare the time required for the two objects to reach the floor. 
 d. Does the time required for an object to reach the ground appear to be 

affected by its path? 
 e. How did your observations change when using two unlike objects? 
 f. If a feather and a coin are dropped from a height of 10 m, would you 

expect them to reach the floor at the same time? Explain your 
response. 

Science Note 
One of Galileo Galilei’s (1564–1642) more famous accomplishments is his 
description of the motion of falling objects. While first investigating free fall, he 
is said to have simultaneously dropped a 10-kg cannonball and a 1-kg stone off 
the Leaning Tower of Pisa. He discovered that the objects hit the ground at 
approximately the same time. 
 About 75 years later, Isaac Newton (1642–1727) developed three laws of 
motion. Using his own second law of motion and the laws of planetary motion 
developed by Johannes Kepler (1571–1630), Newton proved that, in the absence 
of air resistance, any two objects dropped from the same height hit the ground at 
exactly the same time. 
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Activity 1 
 
In the introduction, you investigated the paths of freely falling objects. In this 
activity, you model these paths with parametric equations. 

Exploration 
Consider two freely falling objects. One is dropped straight down from a height of 
10 m. At the same instant, the other is projected horizontally from the same initial 
height. 
 a. The graph in Figure 2 shows the position of each object at intervals of 

0.2 sec. Use the graph to approximate ordered pairs (x,y) for these 
positions, where x represents the horizontal distance and y represents 
the vertical distance. 

   
Figure 2: Positions of two freely falling objects 
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 b. Record the values from Part a, along with the corresponding times, in 
a spreadsheet with headings like those in Table 1. 

  Table 1: Positions of objects over time 

 Object Dropped  

from Rest  

Object Projected 

Horizontally  
Time 
(sec) 

Horizontal 
Distance (m) 

Vertical 
Distance (m) 

Horizontal 
Distance (m) 

Vertical 
Distance (m) 

0.0     
0.2     
  !     

1.4     
 
 c. 1. Calculate the change in horizontal position between consecutive 

points for each falling object. 
 2. The average velocity of an object can be calculated as follows: 

average velocity =
change in position

change in time
 

  Determine the average horizontal velocity (vx ) between 
consecutive points for each object. 

 3. Write a function x(t) that describes each object’s horizontal 
position with respect to time t. 

 d. 1. Calculate the change in vertical position between consecutive 
points for each falling object. 

 2. Determine the average vertical velocity between consecutive 
points for each object. Record these values in a spreadsheet with 
headings like those in Table 2 below. 

  Table 2: Vertical velocity of objects over time 

Time Interval 
(sec) 

Object Dropped  
from Rest (m/sec) 

Object Projected 
Horizontally (m/sec) 

[0, 0.2)   
[0.2, 0.4)   

  !   
[1.2, 1.4)   

 
 e. Acceleration describes an object’s change in velocity per unit time. 

The average acceleration of an object can be calculated as follows: 

average acceleration =
change in velocity

change in time
 

  Use the spreadsheet to calculate the average vertical acceleration 
between consecutive points for each object. 

( ) ( )
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 f. The acceleration due to gravity near Earth’s surface is approximately 
9.8 m sec2  in a direction toward Earth’s center. Compare the average 
acceleration you determined in Part e to this value. 

 g. When a freely falling object has no initial velocity in the vertical 
direction, its height after t sec can be described by the following 
function, where g is the acceleration due to gravity and h0  is the initial 
height: 

y(t ) = − 1
2
gt2 + h0  

 1. Write a function y(t ) that describes the vertical position of each 
object in Figure 2 with respect to time t. Recall that the initial 
height for both objects was 10 m. 

 2. Check your equations by substituting 0.2, 0.8, and 1.2 for t and 
comparing the resulting values of y(t )  to those in Table 1. 

Mathematics Note 
Parametric equations allow rectangular coordinates to be expressed in terms of 
another variable, the parameter. In an xy-plane, for example, both x and y can be 
expressed as functions of a third variable, t: 

x = f (t)
y = g(t)  

 In these parametric equations, the independent variable is the parameter t. The 
dependent variables are x and y. In other words, each value of t in the domain 
corresponds with an ordered pair (x,y). 

 For example, consider an object projected horizontally at a velocity of 15 m/sec 
off a cliff 20 m high. This object’s position after t sec can be described by the 
following parametric equations, where x(t)  represents the horizontal distance 
traveled and y(t )  represents the height above the ground: 

x(t) = vxt = 15t

y(t) = − 1
2
gt2 + h0 = −

1
2
(9.8)t 2 + 20 = −4.9t2 + 20

 

At t = 2  sec, the ordered pair generated by these equations is (30,0.4). This 
indicates that 2 sec after leaving the cliff, the object has traveled 30 m 
horizontally and is 0.4 m off the ground. 

 
 h. Write parametric equations to describe the position of each object in 

Figure 2 with respect to time. 
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 i. Set your graphing utility to graph parametric equations 
simultaneously. 

 1. Using appropriate intervals for x, y, and the parameter t, graph 
both pairs of equations from Part h. 

 2. Experiment with different increments for t. Record your 
observations. 

 3. Use the trace feature to observe and record the values of x, y, and t 
at various locations on each graph. 

Discussion 
 a. Describe the graphs you created in the exploration. 
 b. Does the speed with which the graphs are drawn appear to be related 

to the actual speed of the objects? Explain your response. 
 c. 1. How could you determine the time required for each object to 

reach the ground? 
 2. Describe how you could find the location of each object after half 

this time has passed. 
 d. Describe how you could determine the maximum horizontal distance 

traveled by the object that was projected horizontally. 
 e. Considering an object whose height above the ground can be 

described by the function y(t ), is it reasonable to consider negative 
values for y(t )? Explain your response. 

Assignment 
 1.1 While practicing at a target range, an archer shoots an arrow parallel to 

the ground at a velocity of 42 m/sec. At the moment the arrow is 
released, the strap on the archer’s wristwatch breaks and the watch falls 
toward the ground. The initial height of both the arrow and the watch is 
1.6 m. 

 a. Write a pair of parametric equations, x(t) and y(t ), to describe 
each of the following: 

 1. the position of the watch after t sec 
 2. the position of the arrow after t sec. 
 b. Graph the equations from Part a. 
 c. Determine the height of each object after 0.25 sec. 
 d. Determine how long it will take for each object to hit the ground. 
 e. Determine the horizontal distance traveled by the arrow at the 

time it hits the ground. 
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 1.2 In the introduction to this module, you discussed the airlift of a crate 
of supplies to some firefighters. Suppose that the plane is traveling at 
a horizontal velocity of 250 km hr  and the crate is dropped from a 
height of 100 m. 

 a. Write a set of parametric equations, x(t) and y(t ) , to model the path 
of the crate, where t represents time in seconds. Hint: The units for 
distance should be the same in each equation. 

 b. Determine how long it will take for the crate to hit the ground. 
 c. Determine the horizontal distance traveled by the crate during its 

time in the air. 
 d. If the plane continues to travel at the same velocity, where will it 

be located in relation to the crate when the crate hits the ground? 
 1.3 Two mountain climbers are stranded by a blizzard at an elevation of 

1690 m. A search-and-rescue plane locates the climbers but cannot 
land to pick them up. Flying due east at a velocity of 90 m/sec and an 
elevation of 1960 m, the crew drops a package of food and supplies. 

 a. How long (to the nearest 0.1 sec) will it take for the package to 
reach the ground if it lands at the same elevation as the climbers? 

 b. How far should the plane be from the target site when the rescue 
team releases the package? 

* * * * * 
 1.4 Under the watchful eye of your skydiving instructor, you step out of a 

plane. The plane is traveling at a constant velocity of 65 m/sec and an 
altitude of 1300 m. You wait 10 sec before pulling the ripcord of your 
parachute. 

 a. Ignoring air resistance, describe your path during the 10 sec of 
free fall. 

 b. Write a set of parametric equations that models your path during 
this interval. 

 c. Determine how far you have fallen vertically before pulling the 
ripcord. 

 d. Determine the horizontal distance you have traveled before 
pulling the ripcord. 

 e. At the time you pull the ripcord, where is the airplane relative to 
your position? Explain your response. 
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 1.5 The object of the game “Sure-Aim” is to roll a marble off a table and 
into a cup. The table is 0.8 m high. The cup is 0.1 m high, with a 
diameter of 5 cm. The horizontal distance from the table to the cup’s 
rim is 0.75 m. 

   Determine the approximate velocity at which a marble must leave 
the table in order to land in the cup. Defend your response. 

* * * * * * * * * * 
 
 

Activity 2 
 
In Activity 1, you explored the motion of objects falling from rest or projected 
with a horizontal velocity. In this activity, you investigate the motion of objects 
projected into the air at an angle. 

Discussion 1 
 a. When a batter hits a ball, what forces are involved? 
 b. What factors influence the distance traveled by the ball? 

Exploration 
While watching a videotape of herself in the batting cage, Kami noticed that she 
hit the ball at many different angles of elevation, from line drives to pop-ups. 
After speaking with her fast-pitch softball coach, she wondered what angle of 
elevation would make her hits travel as far as possible. 
 You may recall from the Level 4 module, “Flying the Big Sky with Vectors,” 
that it is possible to analyze this situation using vectors. In this exploration, you 
develop a vector model to help answer Kami’s question. 

Mathematics Note 
A vector is a quantity that has both magnitude (size) and direction. In printed 
work, a vector is typically symbolized by a bold, lowercase letter, such as vector 
u. In handwritten work, the same vector can be symbolized by u→ . The magnitude 
of a vector u is denoted by u . 
 The pair of horizontal and vertical vectors that when added result in a given 
vector are the components of that vector. The horizontal component of a vector u 
is denoted by u x  (read “u sub x”), while its vertical component is denoted by u y . 
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 For example, the arrowhead on vector a in Figure 3 indicates its direction. The 
length of vector a indicates its magnitude. Its horizontal and vertical components 
are a x  and a y , respectively. 

 

Figure 3: Vector a and its components 
 
 a. To analyze the paths of the hit balls, Kami ignores air resistance and 

assumes that each ball leaves the bat at the same speed of 40 m/sec. 
   When the initial velocity of a hit ball is represented by a vector v, 

the vector’s direction is determined by the angle θ  at which the ball 
leaves the bat. Its magnitude is the velocity at which the ball is hit. 
Figure 4 shows vector v and its components. 

 

Figure 4: Vector v and its components 
 1. Write an expression for the horizontal velocity v x  in terms of the 

initial velocity of 40 m sec  and the angle θ . 

 2. Write an expression for the vertical velocity v y  in terms of the 
initial velocity and θ . 

 b. Complete Table 3 for softballs hit at angles of elevation between 0˚ 
and 90˚, in increments of 5˚. 

  Table 3: Component velocities of a softball 

Initial 
Velocity 
(m/sec) 

Angle of 
Elevation 
(degrees) 

Horizontal 
Component v x  

Vertical 
Component v y  

40 0 40 0 
40 5 39.85 3.49 
  !    !    !    !  

40 90   
 

a

a x

a y

40 m sec

v x

v y
θ
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 c. In general, the height of a projectile above the ground at any time t 
can be modeled by the following function: 

 h(t) = − 1
2
gt2 + v yt + h0  

  where g is the acceleration due to gravity, vy  is the vertical component 
of the initial velocity, and h0  is the initial height. 

 1. Consider a softball hit with an initial velocity of 40 m sec  at a 30˚ 
angle of elevation from an initial height of 1 m. Write a function 
that models the height of this softball with respect to time. 

 2. Determine the height of the softball 4 sec after it is hit. 
 d. The softball’s horizontal motion can be analyzed independently of its 

vertical motion. In general, the horizontal distance traveled at any time 
t can be modeled by the following function: 

x(t) = v xt  

  where v x  is the horizontal component of the initial velocity. 

 1. Write a function that models the horizontal distance traveled by 
the softball described in Part c. 

 2. Find the horizontal distance traveled by the softball 4 sec after it is hit. 
 e. Graph the parametric equations from Parts c and d. Use the graph to 

determine the horizontal distance traveled by the softball before it hits 
the ground. 

 f. Repeat Parts c–e using several different values for θ , the angle of 
elevation. Estimate the measure of the angle that will allow a hit ball 
to travel the farthest distance. 

Discussion 2 
 a. Describe the paths of the softball in Part e of the exploration. 
 b. Given the initial velocity and angle of elevation for a hit softball, how 

could you determine each of the following? 
 1. the maximum horizontal distance traveled by the softball 
 2. the time required for the softball to reach its maximum height 
 3. the maximum height reached by the softball. 
 c. What angle of elevation appears to result in the maximum horizontal 

distance for a hit ball? 
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 d. Suppose that the wind is blowing when Kami hits the ball. 
 1. Does wind affect the horizontal or vertical component of a ball’s 

velocity? Explain your response. 
 2. How would you adjust your parametric equations if the wind was 

blowing toward Kami? 
 3. How would you adjust your parametric equations if the wind was 

blowing away from Kami? 

Assignment 
 2.1 While watching the videotape of herself in the batting cage, Kami 

noticed that she hit one pitch especially well. Estimating that the angle 
of elevation measured 20˚, she wondered if that hit would have been a 
home run. 

   Assume that the softball left the bat with an initial velocity of 
40 m/sec at a height of 1 m. 

 a. At what time would the softball have reached its maximum 
height? 

 b. What would have been its maximum height? 
 c. The outfield fence is 2 m high and 80 m from home plate. Would 

the ball have cleared the fence? If so, determine the distance by 
which the ball would have cleared the fence. If not, determine the 
distance by which the ball would have fallen short. 

 2.2 Imagine that the wind is blowing directly toward home plate at 8.5 
m/sec. If Kami hits the ball as in Problem 2.1, will the ball clear the 
fence? Check your response using a graph of the appropriate parametric 
equations. 
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 2.3 The distance traveled by a ski jumper is measured from the base of the 
ramp to the landing point. As shown in the diagram below, the end of 
the ramp is 4 m above the snow. The angle formed by the plane of the 
landing area and the horizontal is 20˚. Ignoring air resistance, find the 
horizontal velocity that the skier would need to jump 55 m.  

   
 2.4 Imagine that you are an engineer for the Buildaroad Construction 

Company. In order to widen a highway, the company must blast 
through a mountain. You have been asked to determine a safe distance 
from the blast for the construction workers on the site. The charge of 
dynamite will propel rocks and debris at a maximum initial velocity of 
55 m/sec. Write a report explaining your recommendations, including 
a minimum “safe” distance. 

* * * * * 
 2.5 At the circus, Rowdy the Riot is shot out of a cannon and into a square 

net which measures 10 m on each side. To land safely, Rowdy must 
land at least 2 m from the edge of the net. The barrel of the cannon is 
2 m off the ground and has a 40˚ angle of elevation. The net is 1 m off 
the ground. Its nearest edge is 30 m from the cannon. 

   Ignoring air resistance, determine an interval of initial velocities 
that will allow Rowdy to land safely in the net. Justify your response 
by showing an appropriate vector analysis of the situation. 
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 2.6 When Lief hits a golf ball, the distance it travels depends on which 
golf club he uses. The following table shows the ball’s angle of 
elevation and initial velocity when hit with four different golf clubs. 

Golf Club Angle of Elevation Initial Velocity 
six iron 32˚ 44.5 m/sec 

seven iron 36˚ 41.5 m/sec 
eight iron 40˚ 38.5 m/sec 
nine iron 44˚ 36.5 m/sec 

 
   From his position on the fairway, Lief wants to hit a golf ball so 

that it lands in the middle of the green. The front of the green is 162 m 
away, while the back is 181 m away. Use the information in the table 
to determine which club Lief should select. 

* * * * * * * * * * 
 
 

Activity 3 
 
In the previous activities, you used parametric equations to model parabolic paths. 
In this activity, you use parametric equations to investigate circular and elliptical 
paths. 

Exploration 1 
Recall from the Level 4 module, “Controlling the Sky with Parametrics,” that a 
circle with center at point (h, k )  and radius r can be defined by the following pair 
of parametric equations: 

x(θ) = h + rcosθ
y(θ) = k + r sinθ

 

where θ  is the measure of the central angle formed by two radii of the circle, one 
of which is parallel to the x-axis. As shown in Figure 5, each value of θ  
corresponds with a specific point on the circle. 

 
Figure 5: A circle with center at (h,k) and radius r 
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 a. Figure 6 shows a toy airplane attached by a string to a weighted base. 
As the plane flies, it follows a circular path whose radius is the length 
of the string. 

 
Figure 6: A toy airplane 

 1. Use parametric equations to model the path of the airplane, given 
that the length of the string is 2 m long and the end attached to the 
base is at the origin. 

 2. Graph your equations from Step 1. Note: Remember to set your 
graphing utility to measure angles in radians. 

 b. The plane completes 1 revolution in 1 sec. Determine its average 
speed in meters per second. 

Mathematics Note 
The average angular speed of a moving point P, relative to a fixed point O, is the 
measure of the angle θ  through which the line containing O and P passes per unit 
time. For example, consider the wheel in Figure 7 below. 

 
Figure 7: Point P on a wheel 

Suppose P moves 1 4  the circumference of the wheel in 2 sec. In this case, the 
line containing O and P has passed through an angle measure of 2π 4 or π 2  
radians in 2 sec. Therefore, the average angular speed of P is: 

π 2 radians
2 sec

=
π
4

 radians sec  

 
 c. Determine the plane’s average angular speed in radians per second. 

O
θ

P
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Mathematics Note 
The position of an object traveling counterclockwise at a constant angular speed 
c, on a circle with center at point (h, k ) and radius r, can be modeled by the 
following parametric equations: 

x(t) = h + r cos(ct)
y(t) = k + rsin(ct)

 

where t represents time. 
 For example, consider a chair on a Ferris wheel with a radius of 10 m, where 
the center of the wheel is 12 m off the ground. The Ferris wheel completes 
1 revolution every 20 sec. In this case, the angular speed c is 2π 20 , or 
π 10  radians/sec. If the origin is located on the ground directly below the wheel’s 
center, the chair’s position with respect to time can be modeled by the following 
parametric equations: 

x(t) =10 cos π
10
t⎛ 

⎝ 
⎞ 
⎠ 

y(t) =12 +10sin
π
10

t⎛ 
⎝ 

⎞ 
⎠ 

 

 
 d. Each of the following pairs of parametric equations models the movement 

of a toy airplane at the end of a 2-m string, where t represents time in 
seconds. Determine how long it takes each plane to complete 1 revolution. 

 1. x(t) = 2 cos(πt)  
  y(t ) = 2sin(πt)  
 2. x(t) = 2 cos(2πt ) 
  y(t ) = 2sin(2πt)  

 3. x(t) = 2 cos
2π
3
t⎛ 

⎝ 
⎞ 
⎠  

  y(t ) = 2sin 2π
3
t⎛ 

⎝ 
⎞ 
⎠  

 e. Determine a pair of parametric equations that models the motion of a 
toy airplane that completes 1 revolution in each of the following 
intervals: 

 1. 2.5 sec 
 2. 0.8 sec 
 3. a sec. 
 f. For each pair of parametric equations in Part e, determine the average 

speed of the plane. 
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Discussion 1 
 a. Is the speed at which the graph is plotted related to the actual speed of 

the object moving around the circle? Explain your response. 
 b. Using parametric equations of the form given in the previous 

mathematics note, what is the position of the object when t = 0? 
Justify your response. 

 c. Figure 8 below shows three different points on a circle: A, B, and C. 
How would you model the movement of an object whose initial 
position is at one of these points? 

 
Figure 8: A circle with center at the origin 

 d. Consider an object moving on a circle with center at (–4,3) and radius 
7 units. If the object completes 1 revolution every 5 sec, describe how 
to use parametric equations to model its position over time. 

 e. Describe how to determine the speed of an object whose position with 
respect to time can be modeled by the parametric equations below, 
where t represents time in hours: 

x(t) = 9 cos(6t)
y(t) = 9sin(6t)

 

 f. Figure 9 below shows two concentric circles and a segment OP 
containing a point Q. 

 
Figure 9: Two concentric circles 

 1. Compare the speeds of P and Q as the segment rotates about O. 
 2. Compare the angular speeds of P and Q as the segment rotates 

about O. 

A

B

C

O PQ
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Exploration 2 
Parametric equations also can be used to model elliptical paths. In this 
exploration, you discover how to use parametric equations to define an ellipse. 
 a. Use a geometry utility to complete the following steps. 
 1. Construct two circles with center at the origin O and different 

radii. Create a moveable point on the outer circle. Label this point 
A. 

 2. Draw a ray from O through A. Locate the point of intersection of 
the ray and the inner circle. Label this point B. 

 3. From A, construct a segment perpendicular to the x-axis. Locate 
the intersection of the perpendicular and the x-axis. Label this 
point C. 

 4. From B, construct a segment perpendicular to the x-axis and a line 
perpendicular to the y-axis. Label the line perpendicular to the 
y-axis m. Locate the intersection of the perpendicular segment and 
the x-axis. Label this point E. 

 5. Locate the point of intersection of AC  and line m. Label this 
intersection D. This point represents one point on your graph of an 
ellipse. Your construction should now resemble the diagram in 
Figure 10. 

 
Figure 10: Construction for modeling an ellipse 

 b. Trace the locus of point D as point A moves about the outer circle. 
 c. Using your construction, let t represent m∠BOE = m∠AOC . Let 

(x,y)  represent the coordinates of point D. 

 1. Express x in terms of t and OA  
 2. Express y in terms of t and OB . 

m
t

O E

B
A

D

C x

y
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 d. Suppose that the radius of the larger circle in Figure 9 is 4 units, while 
the radius of the smaller circle is 2 units. Write parametric equations 
that model the paths of points A, B, and D as A moves about the larger 
circle. 

Discussion 2 
 a. Compare your construction with those of your classmates. What 

differences do you observe? 
 b. 1. Compare the parametric equations you found in Part d of 

Exploration 2 with those of your classmates. 
 2. Describe a method you could use to determine these equations. 

Mathematics Note 
An ellipse with center at the origin can be defined parametrically by the equations 
x(t) = acos t  and y(t ) = bsin t , where a is the positive x-intercept of the ellipse 
and b is the positive y-intercept. 
 For example, consider an ellipse with center at the origin that intersects the x-
axis at (12,0) and the y-axis at (0,7). In this case, a = 12  and b = 7 . Therefore, the 
parametric equations of the ellipse are x(t) =12 cos t  and y(t ) = 7sint . 

 
 c. Consider the locus of points traced by D in Part b of Exploration 2. Does 

a graph of these points appear to be a function? Explain your response. 
 d. When the locus of points traced by point D is expressed using 

parametric equations, its graph is a function of t. 
 1. Describe the domain and range of this function. 
 2. Explain why it is a function. 

 e. How are the values of a and b in the equations x(t) = acos t  and 
y(t ) = bsin t  related to the lengths of the axes of an ellipse? 

 f. Describe the type of ellipse formed when a = b . 
 g. What advantages are there in using parametric equations to sketch 

ellipses? 

 h. The parametric equations x = a cos t  and y = bsint  define the 
coordinates of the points of an ellipse. Solving these equations for 
cos t  and sint , respectively, results in the following: cos t = x a and 
sin t = y b . 

   If these equations are squared and added together, how is the 
resulting equation related to an ellipse? Hint: Recall from the Level 6 
module, “Ostriches are Composed,” that sin2 x + cos2 x = 1 is true for 
all values of x. 
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Assignment 
 3.1 Assume that the radius of the larger circle in Exploration 2 is 5 units, 

while the radius of the smaller circle is 3 units. 
 a. Write parametric equations that describe the locus of points traced 

by D in terms of the sine and cosine of the angle t. (See Figure 10 
for reference.) 

 b. Graph the equations from Part a on a graphing utility. Describe 
the resulting figure, including the locations of its foci. 

 c. Graph the parametric equations x(t) = 3cos t  and y(t ) = 5sint . 
Describe the resulting figure, including the locations of its foci. 

 3.2 The diagram below shows a Ferris wheel with a radius of 8 m. The 
bottom of the Ferris wheel is 2 m above the ground. 

 
 a. The wheel completes 1 revolution every 20 sec. Determine the speed 

and angular speed of a chair on this Ferris wheel. 
 b. 1. Consider a chair whose initial position is at point A. Use 

parametric equations to model the position of this chair over time. 
 2. How high above the ground will this chair be if the wheel stops 

10 sec after the chair passes point A? Explain your response. 
 3. How long will it take for this chair to reach a height of 16 m? 
 c. Describe how you could model the movement of a chair whose 

initial position is at point B. 

2 m

8 m

ground
B

A

Ferris
wheel
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 3.3 The following diagram shows two toy trains traveling on concentric 
sets of circular tracks. 

   
   The train on the outer track is 1 m from the center, while the one 

on the inner track is 0.5 m from the center. 
 a. Suppose that each train completes 1 lap around its respective track 

in 15 sec. 
 1. Determine the angular speed of each train. 
 2. Determine the speed of each train. 
 3. Model each train’s position over time with parametric 

equations, given that at t = 0 , both trains are located on the 
x-axis of a two-dimensional coordinate system. 

 b. Suppose that each train travels at a constant speed of 0.25 m/sec. 
 1. Model each train’s position over time with parametric 

equations. 
 2. How long will it take the train on the inner track to gain a 

one-lap lead over the train on the outer track? 
 3.4 Use your response to Part h of Discussion 2 to complete the 

following. 
 a. An ellipse can be represented parametrically by the equations 

x =12 cos t  and y = 7sint . Write the equation of this ellipse in 
standard form. 

 b. Write a set of parametric equations for the ellipse defined by the 
following equation: 

 x
2

36
+
y2

4
=1  

 3.5 a. Write a set of parametric equations that define an ellipse with 
center at (2,3), a major axis with a length of 7 units, and a minor 
axis with a length of 3 units. 

 b. At what points does a graph of this ellipse intersect the lines x = 2  
and y = 3? 

 c. Write a set of parametric equations for an ellipse with center at 
(h, k ), a major axis with length 2a, and a minor axis with length 2b
. 
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Mathematics Note 
The area of an ellipse can be calculated using the formula A = πab , where 2a, 
and 2b are the lengths of the axes. 
 For example, consider the ellipse defined parametrically by x(t) = 6 cos t  and 
y(t ) = 11sin t . In this case, the length of the major axis is 22 units, while the 
length of the minor axis is 12 units. The area of this ellipse is 6(11)π = 66π units2

. 

 
 3.6 a. Graph an ellipse defined by parametric equations of the form 

x(t) = acos t  and y(t ) = bsin t , where a ≠ b . 

 b. Use the formula A = πab  to calculate the area of this ellipse. 
 c. How is the formula for the area of an ellipse related to the formula 

for the area of a circle? 
* * * * * 

 3.7 Johannes Kepler’s (1571–1630) first law of planetary motion states 
that the planets move in elliptical orbits in which the sun is located at 
one focus of the ellipse, as shown in the following diagram. 

 
   The shape of Earth’s elliptical orbit can be modeled parametrically 

by the equations x(t) = 1.4958 •108( )cos t  and 
y(t ) = 1.4955 •108( )sint , where x and y represent distances in 
kilometers and t represents angle measures. 

   Johannes Kepler approximated the circumference of an ellipse 
using the equation π (a + b) . 

 a. Explain why this formula provides a reasonable approximation for 
Earth’s orbit by comparing it to the formula for the circumference 
of a circle. 

 b. Using Kepler’s approximation, how far does Earth travel in its 
yearly orbit? 

sun

planet

elliptical
orbit
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 3.8 Kepler’s second law of planetary motion states that a ray drawn from 
the sun to a planet will sweep out equal areas in equal times. 

   In the diagram below, for example, the time required for a planet to 
travel from A to B equals the time it takes for the planet to move from 
C to D. Therefore, according to Kepler’s second law, the two shaded 
areas are equal. 

 
   Use Kepler’s second law to approximate the area that a ray drawn 

from the sun to Earth would sweep in 30 days. 
 3.9 The following diagram shows a belt and two circular pulleys. The 

radius of pulley A is 10 cm, while the radius of pulley B is 6 cm. 

 
   The center of pulley A is located at the origin of a two-dimensional 

coordinate system. The center of pulley B is 40 cm to the right of the 
origin on the x-axis. 

 a. Suppose that pulley A completes 1 revolution every 0.1 sec. 
Determine the speed of a point on the circumference of pulley A. 

 b. Write parametric equations to model the movement of a point on 
pulley A. 

 c. When either pulley turns, the belt causes the other pulley to turn 
also. Given this fact, which quantities would you expect to be 
equal: the pulleys’ speeds, or their angular speeds? Explain your 
response. 

 d. Write parametric equations to model the movement of a point on 
pulley B. 

  

sun
A

B
C

D

x

y

A B
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Summary 
Assessment 

 
 1. A motorcycle stunt rider is planning to jump a line of cars arranged 

side by side, as shown in the diagram below. The approach ramp is 
14.4 m long and 2.5 m high, and the motorcycle will have a velocity 
of 130 km hr  when it leaves the ramp. 

   
   The average width of each car is 1.7 m, and the last car in line is 

1.5 m high. Determine the maximum number of cars that the stunt 
rider could clear (ignoring air resistance). Justify your response. 

 2. The following diagram shows a water wheel with eight paddles. 
 

 

 
  The center of the wheel is 1.2 m above the water’s surface. The 

distance from the wheel’s center to the end of each paddle is 1.8 m. 
The current flows at a speed of 4.5 km hr . 

 a. Assuming that the speed of point S equals the speed of the current, use 
parametric equations to model the position of S with respect to time. 

 b. Determine how long point S is under water during each revolution 
of the wheel. 

 c. Given that the eight paddles are evenly spaced, how long are two 
consecutive paddles under water during a single turn of the wheel? 
Explain your response. 

14.4 m
2.5 m

S
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 3. The orbits of planets can be modeled by ellipses with one focus at the 
sun. Orbits are often described by their aphelion (farthest point from 
the sun), perihelion (closest point to the sun), and orbital eccentricity. 

   Eccentricity is a measure of the orbit’s elongation, and is equal to 
the ratio of the distance c between the center and one focus to half the 
length of the major axis. In other words, e = c a . 

 
   In our solar system, Pluto has the most elongated orbit. Its orbital 

eccentricity is 0.2482. Pluto’s aphelion and perihelion are 
7.3812 •109  km and 4.4458 •109  km, respectively. 

   Determine parametric equations to model Pluto’s orbit. Graph 
these equations and describe the shape of the orbit. 

  

sun

perihelion aphelion
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Module 
Summary 

 
 • Acceleration describes an object’s change in velocity per unit time. The 

average acceleration of an object can be calculated as shown below: 
average acceleration = change in velocity change in time  

 • The height h of a falling object after t sec can be described by the function: 

h( t) = − 1
2
gt2 + h0  

  where g is the acceleration due to gravity and h0  is the object’s initial 
height. The acceleration due to gravity on earth is about 9.8m sec2  in a 
direction toward Earth’s center. 

 • Parametric equations allow rectangular coordinates to be expressed in 
terms of another variable, the parameter. In an xy-plane, for example, both 
x and y can be expressed as functions of a third variable, t: 

x = f (t)
y = g(t)  

  In these parametric equations, the independent variable is the parameter t. 
The dependent variables are x and y. In other words, each value of t in the 
domain corresponds with an ordered pair (x,y). 

 • A vector is a quantity that has both magnitude (size) and direction. In 
printed work, a vector is typically symbolized by a bold, lowercase letter, 
such as vector u. In handwritten work, the same vector can be symbolized 
by u→ . The magnitude of a vector u is denoted by u . 

 • The pair of horizontal and vertical vectors that when added result in a given 
vector are the components of that vector. The horizontal component of a 
vector u is denoted by u x  (read “u sub x”), while its vertical component is 
denoted by u y . 

 • In general, the height of a projectile above the ground at any time t is 
described by the function: 

h(t) = − 1
2
gt2 + v yt + h0  

  where g is the acceleration due to gravity, v y  is the magnitude of the 
vertical component of the velocity, and h0  is the initial height. 
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 • A circle with center at point (h, k ) and radius r can be defined by the 
following pair of parametric equations: 

x(θ) = h + rcosθ
y(θ) = k + r sinθ

 

  where θ  is the measure of the central angle formed by two radii of the 
circle, one of which is parallel to the x-axis. 

 • The average angular speed of a moving point P, relative to a fixed point O, 
is the measure of the angle θ  through which the line containing O and P 
passes per unit time. 

 • The position of an object traveling counterclockwise at a constant angular 
speed c, on a circle with center at point (h, k ) and radius r, can be modeled 
by the following parametric equations: 

x(t) = h + r cos(ct)
y(t) = k + rsin(ct)

 

  where t represents time. 
 • An ellipse with center at the origin can be defined parametrically by the 

equations x(t) = acos t  and y(t ) = bsin t , where a is the positive x-intercept 
of the ellipse and b is the positive y-intercept. 

 • The area of an ellipse can be calculated using the formula A = πab , where 
2a, and 2b are the lengths of the axes. 
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